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4.1 INTRODUCTION

In an ideal world, your dataset would always be perfect without any missind@ddaperfect

datasets are rare in ecology and evolytwnn anyotherfield. Missing data haunts every type of
ecological or evolutionary data: observatiQrexperimental, comparativer metaanalytic.But this

issuels rarely addressdd research article®Why? Researchers often play down the presence of
missing data in their studies, because it may be perceived as a weakness of their work (van Buuren
2012); this tendencyas been confirmed medical trials (Wood et al. 2004), educational research
(Peugh and Enders 2004) and psychology (Bonder 2006). | speatialateany ecologists also play

down the issue of missing data

The most common way of hanalj missing data is calldibt-wise deletion researchers delete

cases (or rowBsts) containing missing valuesdrun a modele.g.a GLM (Chapterl3) using the
dataset without missing values (knowrcamplete case analysjsWhile common few researcérs
explicitly statethat they are using this approaé&mother common practice that is usually not
explicit involves statistics performed on pairs of points, like correlation analysis. For example, in
analyzing the correlationamongx, y,andz, we may k@ missing some data for each variable.
Missing a value foxin some cases still allows one to ysendzfrom those cases. This is called

pair-wise deletion and it can often be noticed by seeing that there are different sample sizes for



different correhtions List-wise and paiwise deletiorareoften the default procedures ussd

statistical software

What is wrong with deletion? The problems are-fald: 1) loss of informationi(e., reduction in
statistical power) and2) potentialbiasin parameteestimates under most of circumstandeag
here means systematic deviation from population or true parameter values; Nakagawa and Hauber

2011).

To see the impact on statistical poyieragine a dataset with 12 variables. Say only 5% of each
variable ismissing without any consistent patterngsingcomplete case analysise would lose
approximately 43% odll cases. The resulting reduction in statistical power is fairly substantial. To
amelioratehereduction in power, some researchers usewispregression approachealled
available case analysisvherecases are deleted if they are missing values needed to estimate a
model, but the same cases are included for simpler models not requiring thoseFaalegample,

a full model would contain 12aviables with ~8% of casesnissing while a reduced modehight
have 3 variables with ~10% missirye parameter estimates indices likeR? from these different
models comparableCertairly onecannot use information criteria such as AIC (Akaike Infation
Criteria; see Chapter 8r model selection procedurbscaus¢hese proceduregquireacomplete
case analysisSuch model selection camly be donaisingavailable variable analysishatonly
considersrariables with complete data. However, #yggproach can exclude keyormation(e.g.,

Nakagawa and Freckleton 2011).

With regard tahe biasproblemin deletingmissing datacases are often missifgy underlying
biological reasonsothatparameter estimates from both complete case and laleailseanalyses
are often biasedror example, older or OshyO animals are difficult to catch in the field (Brio and
Dingemanse 2009%0thattheir informationmay be systematicallyissing leading tabiased

parameteestimates.



Some researchers Gifil© or impute missing values to circumvensépeoblems You may be
familiar with filling missing values with theamplemean valuerean imputation). Indeed, in
comparative phylogenetic analysis it has been common to replace missing values withgamen m
(see Freckleton et al. 2003). Alternatively, missing data imputation can be slightly more
sophisticatedusing regression predictions to fill in missing casegression imputation).
However,these methods, known ssgle imputation techniquegsresut in uncertainty estimates
thatdo not account for the uncertairthat the missing values would have contribyed. too
smallastandard error, or too narraconfidence interval; McKnight et al. 2007; Graham 2009
2012; Enders 2010T.hus the rate bType | error(Chapter 2) increases; | call this phenomenon
biased uncertainty estimatesThese simple fixegsing single imputatiowill yield biased

parameter estimates

The good news is that wew have solutionshatcombat missing data probleniiey come in

two forms:multiple imputation (Ml), anddata augmentation(DA,; in the statistical literature, the
term data augmentation is used in different whys | follow the usage of McKnight et al. 2007).
Thebadnews isthat very fewresearchers iacdogy and evolution use such statistical tools
(Nakagawa and Freckleton 200B)L and DA have been available to us since the late 1986(As
some key publications in 1987 (Allison 1987; Tanner and Wong 1987; Little and Rubin 1987;
Rubin 1987)In the begnning, few of us could use such technigasshey were namplemented

in statistical packages or prograntil the late 19900Fhere are novR packagege.g.norm and
pan; Schafter 1997, 200ihat make MI and DA relatively easy to use for many anakfse
reviews of statistical software for treating missing dataHs®éon and Kleinman 2007; Yucel
2017). Why the lag in usinguch important statistical tool&fany of us may have never heard
aboutmissing data theoryuntil now because it is not a paftour general trainingsaecologists
and evolutionary biologistélowever, the main reason may be psychological. It certainly feels a bit

uneasy for me to Omake upO data to fill il Yepsrenot alone medical and social scientists have
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alsobeen expsed to methods for handling missing datat,they have also been sldw adopt

them (Raghunathan 2004; Graham 2009; Sterne et al. 2009; Enders 2010). Researchers often may
see proceduresichas data imputation and augmentation as cheaiimgven as soathing akin to
voodoo. It turns out that our curreguick fixes area lot more like vooddoAs Todd Little (cited in

Enders, 2010puts it OFor most of our scientific history, we have approached missing data much
like a doctor from the ancient world mighse bloodletting to cure disease or amputation to stem
infection (e.g. removing the infected parts of oneOs data by usinigéistr pairwise deletiohO;It

is hightime for us to finally start using missing data procedures in our analjsess epecially

sogiven therecent growth in the number Bfpackageshatcanhandle missing datppropriately

using MI and DA (Nakagawa and Freckleton 2011; van Buuren 2012).

In this chapterl explain and demonstratlee powerful missing data proceduresy available to
researchers in ecology and evolut{erg. Charlier et al. 2009; GonzH8ntrez et al. 2012)first
describe the basics and terminology of missing data thearficularly thethree different classes of
missing datarfissing data mechanimss). | thenexplain how different missing data mechanisms
can be detecteahdat least for some of the classhewto prevenedin the first place. The main
section will cover three types ofethods for analgng missing datgddeletion, augmentatioand
imputation)with emphasi®n MI, practical issues associated with missing data procedures,
guidelines for the presentation of resalisl theconnecton betweenmissing datassues andther

chapters in this book

4.2 MECHANISMS OF MISSING DATA
4.2.1 Missing data theory, mechanisms and patterns

Rubin (1976) and hisolleagues (e.g. Little and Rubin 1987, 2002; Little 1992, 188&blished
thefoundationsf missing data theory. Central to missing data theory is his classification of

missing data prokims into three categories: 1) missing completely at rantt@AR ), 2) missing
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at random AR ), and 3) missing not at randoMNAR ). These three classes of missing data are
referred to asnissing data mechanismsfor a slightly different classification, s€&elman and Hill
2007).Despite the name, these are catisal explanations for missing dd¥ssing data
mechanisms represent the statistical relationship between observations (variables) and the
probability of missing datal’he other term easy to con&uwith missing data mechanisms is
missing data patterns theseare the descriptions @fhich values arenissing in a datas¢see

section 4.3.1)

4.2.2 Informal definitions of missing data mechanisms

Here, | use part of a dataset from the house spdPagser domesticupopulationon Lundy

Island, UK (Nakagawa et al. 2007a; Schroeder et al. 2012; | will use a full version of this dataset in
section 4.4.5). Male sparrows possess what is teafiazhdge of statusO, which has been shown to
reflect male ighting ability (Nakagawa et al. 2007b). The badge of status is a black throat patch,
which substantiallyvanesin size with larger badges resenting superior fighters. Table 4.1 contains
the information on badge sigBadge)andmaleage(Age) from 10 mées and also on the three

missing data mechanisms in the context of this dataset. The MCAR mechanism occurs when the
probability of missing data in one variable is not related to any other variable in the dataset. The
variable Agewmcar) in Table 4.1 is nssing completely at random (MCAR) because the probability

of missing data oAgeis not related to the other observed variaBedge.
[Table 4.1 around here]

The MAR mechanism is at work when the probability of missing data in a variable is related to
some other variable(s) in the datasHtyou are wonderin@So hovis this missing at random?0
you are not alone: the term confuses many petifitehelpful to see MAR as Oconditionally
missing at randor® that is, missing at random after controllimgfoother related variables

(Graham 2009). In our sparrow example, fgg is missing at random (MAR) because the



missing values are associated with the smallest three \a&lB8egslge Once youcontrol for Badge,
data onAge aremissing completely at rlom, MCAR This scenarionay happen, for example, if
immigrants to this sparrow populatiQmhose age is unknown to the researckemiehowhave a

smallerbadge size.

The MNAR mechanism happens when the probability of missing data in a variableciatagiso
with this variable itselfeven after controlling for other observ@gdlated)variables. Agginar) IS
missing not at random because the three missing valuesyaes dld birdsand it is knowrthat
older males tend to have larger badgessi3ech a scenario is plausible if a study on this sparrow

population started 3 years agmd we do not know the exact age of older birds.

4.2.3 Formal definitions of missing data mechanisms

Now to provide more formal/mathematical definitions of the mgssiata mechanisms, | introduce

relevant notation and terminology from missing data theory.

e Y is a matrix of the entire dast(including response and predict@riable$ that can be

decomposed int¥obs andY mis (the observed and missing parts of thé&ajl

¢ R is amissingnessnatrix Bbthese are indicators of whether twresponding locations i

are observed (0) or missing){And

e (is a vector oparameterslescriting the relationship between missingné?snd the data
set,Y (Table 4.2; see Liie and Rubin 2002; McKnight et al. 2007; Molenberghs and
Kenward 2007; Enders 2010; Graham 20I8portantly,q is known as the mechanisoh
missing datand provides the basis for distinguishbefween MCAR, MAR and MNAR
An intuitive interpretatiorof q is thatthe content ofj indicatesone of the three missing data

mechanisms.

[Table 4.2 around here]



It is theeasiest to begiwith the description of MNAR data because it includikshese
mathematicaterms.The three mechanisms, in relation to ¢bacepts of missingness and

ignorability (discussed later in this section), are summarized in Figure 4.1.

Following Ender (2Q0), the probability distribution for MNAR can be written as:

P(R | Yobs, Ymis, 9). (4.1)

This says thathe probability ofwhether a position iR is 0 or 1 depends on boYves andY mis,
andthis relationshipis governed byy. In Table 4.2y> is MNAR, if missing values depend an
itself. Such missing values cgbut need notperelated tovi, a completely observed vabie. In
this particular casehe probability of MNAR missingnesiependsompletely onY mis, i.e. p(R
[Ymis, ), which is a special case wiissing values are both related to beilandv: (i.e.e.q.4.1).
Anothermore complicatd form of MNAR is whenvz depends on a completely unobserved
variable,e.g, vzin Table 4.2Fora concretexamplein Table 4.1the MAR missing valuesn Age
would beomeMNAR, if we had nomeasurement of badge si&adge) In practice one can only
suspect or assume MNABe@useit depends othe unobserved valuaa Y mis (but see section

4.4.5)

The probability distribution for MAR can be written as:

P(R | Yobs, q)- (4.2)

This means thanissingness depends only Wews, and this relationship is governed dpyin Tabke

4.2,v2is MAR if itsmissing valueslepend on the observed variable

Finally, the probability distribution for MCAR is expressed as:

p(R | q). (4.3)



This says that the probability of missingness does not depend on tlieaddtary ons Nor Y mis), but
thatwhether positions iR take O or 1 istill governed by. Sov. is MCAR if its missing values

do not depend oanobserved variablérsi) or the values of yitself.

Ignorability is another important conceptote thathe same words usedwith other meaningsn
otherstatistical contextfor examples, see Gelman and Hill 2RAMINAR missingness is Onron
ignorable® whereas MARd MCARareOignorable® (Rubin and Little 200forability refers to
whether we can ignoite way in whichdat are missing when we impute or augment missing data;
it does not imply that one can remove missing!datéhe MAR and MCAR mechanisms,

imputation and augmentation do not require thatna&e specific assumptions about how data are
missing On the othehand nonignorable MNAR missingness requires such assumptions to build a

model to fill in missing values (section 4.4.8).

[Figure 4.1 around here]

4.2.4 Consequences of missing data mechanisms: an example

Figure 4.2showsthe three different mechanismof missing datan a bivariate examplén two
situations where % missing values are differd@®4 and 80%rom the sample size of 2D0he
missing valuesre all in Variable 2 (plotted as a response variable; analogew#td able 4.2) but
not in Vaiable 1 (analogous ta in Table 4.2). The populatianuemean (u ) and standard
deviation ( ) for Variable 2 are 0 and 1.41 (variand€,'= 2), respectivelywhile the true
intercept ), slogpe (! ) andresidual variance/(?) for thelinearrelationship beteenVariable 1

andVariable 2, are 0, 1 and 1, respectiv@lgrameter estimatésom analysis from OobservedO data

of three missing data mechamis(i.e. complete case analysisgaummarized in Table 4.3
[Figure 4.2 around here]

[Table 43 around heile



As we would expect,grameter estimates from thegressionusingthe completelatasetare close

to population true valugd able 4.3) As theory suggests, no obvious biastive parameter estimates
from the MCAR datasetsan be detecte@dlthough standard errors for regression estimates
increased (i.ethere idess statistical power)n general, manparameter estimatéom the MAR
datassetsseem to bdiased tcsomecertain extentNoticeably manyparameteestimatedrom the
MNAR datasetseem to baeeverely biasedn the datasets @l the three mechanisms, deviations
from true estimates usually increagken thepercentage of missingalues isaisedi.e. form 40%

to 80%(all relevantR code is provided in the onlineppendix4).

In real datasetghe consequences of missing data wilfuréhercomplicatedby theexistence of
more than two variables atige presenc®f missing valuesh more than one variable. Furthermore,
it is usually impossible tanambiguously classifgasesnto the three mechanisms (Graham 2009,
2012) For example, it is hard tionagine missing data that agatirely unrelated to other variables
in the dataset,e., purely MCAR Missing data in real datasets are somewhemeocomtinuum from
MCAR throughMAR and to MNAR, as depicted in Figurel4ln asensejt may be easiest to think
of all missing datasbelonging to MAR tassomedegreebecausdAR residesn the middle of this

continuum Further detas can be founth Nakagawa and Freckleton (2008 and 2011).

4.3DIAGNOSTICS AND PREVENTION

4.3.1 Diagnosing missing data mechanisms

In this and the next section (section 4.4), | will use snippdgscoftie almg with example datasets.
The full R code, related datasetsd more detailed explanations ofgbeare all found in the online

Appendix4.

It is straightforward to visualize missing data patterns with an aid Réunctions. As an example,
| again use gart of Lundy male sparrow data (Table 4T)emissingmap function in the

Amelia package (Honker et al. 201noduced=igure 43, which is a visual representation of



missing data patterns or in fact, a matRxmissingness). Plotting missing datatpats can
sometimes reveal unexpected patterns such as a cluster of missing values, which were not
noticeable during data collection stages. Thercaveaskvhy such patterns exisHowever,

missing data patterradonedo not tell us about which missingtdanechanism(s) underlie our data.

[Figure 43 around here]

By deleting cases where missing values exist (complete case anahgsisiplicitly assume

MCAR. There are aumber of ways to diagnose whether or not missing data can be classified as
MCAR (reviewed in McKnight et al. 2007However, as we have leat MCAR is ax unrealistic
assumption because such precise missingness is implausible (Little and Rubin 2002; Graham 2009,
2012; see Figure #). and also because biological and/or practical reagemsrallyunderlie

missingness (Nakagawa and Freckleton 2002)R bfor whichthe pattern of missingness

ignorablebis amore realistic assumption. In fact, the MAR assumption is central to many missing
data procedures (Section 4.K)y main recommendeon is to deal with missing values under the
assumption of MAR even when all missing data are diagnosed as NE&&Bchafer and Graham

2002; Graham 2009, 2012; Enders 2010).

When isit really useful to identifymissing data mechanismg®u maywant tosee MCAR

diagnostics ifyou have to resort to missing data deletion. The simplest method is to conduct a series
of t testson valuesdetween observed and missing groups in each variableiri§ the one group

andl the otheiin missingnes®; see Table 4.2)yhich assess mean difference in the other

variables in the dataséf.all t-tests are nosignificant, then you can say missing values in that
dataseareMCAR,; if not, they are MAR or MNAR. However, as the size of majrows

performing and assessingultiple t-testsgets tedious very quicklgnd alsamay result in Type |

errors Little (1988) proposed a multivariate version of this procedure, which produces one statistic

(a ! % value) for the entire datas@or details, see Little 1988; McKnight et 2007; Enders 2012)



This extension ofhet-test approach can be carried out byltiteeMCAR  function in the

BaylorEdPsych R package (Beaujean 2012).

For the example datasetdpDataPart , see online Appendi4), thetest produced ? = 35.65 ang

< 0.0M1.We can conclude th#tis dataset contains ndCAR missingnessT his testhas the
advantage of beingimple,but has two major shortcomings: 1) the dataset may oftenwhealk
statistical powerespecially when the observed and missing groups ardamcled and 2& non
significant resultanbe obtained even if missingnesMAR or MNAR. This occurswhen for

example missing valuesn a variablearerelated to the high and low values of another variable

There are neither statistical tests nor &ldechniques to distinguish between MAR and MNAR
(McKnight et al. 2007; van Buuren 2012). This is not surprising given that the probability
distributionsfor MAR (p(R | Yobs, q)) and MNAR O(R | Yobs, Ymi, q)) differ only inthat MNAR
dependonYm (unolserved valuespandwe have no way of knowing what unobserved values

were. Rather, we need to ascertain whether or not missing values are considered MNAR from our
understanding of the biological systemsle@ninvestigation. For exampl@, the MNAR examplen

Table 4.1, age informationagmissingfrom the oldest birddyecause of the limited duration of the

study.

Graphical method#or diagnosing missingnesse generally much more usefMisualzations of
therelationship between thariginal dataset anchissingnesg$e.g.,m: in Table 4.2) isasily done
in R, using buil-in functions and theairs.panels function from thepsych package (Revelle

2012).

> Missingness <- ifelse (is.na  (PdoPartData) == TRUE, 0, 1)

# creating the missingness matrix

> MissDat a <- data.frame (PdoPartData, Missingness)

# combining the original dataset with the missingness matrix



> library (psych) # loading the psych package
> pairs.panels (MissData, ellipses = FALSE, method = "spearman”)

[E a figure will appear E]

The resultig figure (Figure 4) contains visual information on all the original variables and
missingness variableas well as information about all the correlations among these variables. |

encourage the reader to study this figure to identifyMQ@AR missingness

[Figure 44 around here]

4.3.2 How to prevent MNAR missingness

As thefather of modern statistics, Ronaid Fisheris reported to have sai@he best solution to

handling missing data is to have ngdautthisis probably not the easiestlution(McKnight et al.

2007). Missing data prevention requires careful planning and execution of studies and experiments
as well as good understanding dfiebiological systems at handnd even themissing datare

often unavoidable (Nakagawa and Freckle206Q8). However, there is a trick that you can use to
make missing values much easier to handle. The trickidedgm your study witla data collection

plan, wheren you will turn MNAR missingness into MAR missingness. In other watds,means
alteringnonignorable missing values toake themgnorable missing values cathhenbe handled

with ordinary missing data procedures such as multiple MI (or without making special assumptions

due to MNAR; see Schafer and Graham 2002; Graham 2009, 2012).

When youhave a good understanding of your biological sysigm usually know which varialde
will be likely to have missing valueE.you collect data olknown correlates of these missipgone
variables youmissing valuesvill be morelikely to beMAR than MNAR. These correlates are
calledauxiliary variables in the missing data literature. An extension of this idea iplmned
missing data designin whichyou make the use of the MAR assumption to deliberately

incorporate MAR missingness in your data aditen. Thismay seem very strange first, but think
7"



of a situation where Measurement A is very expensiwllectand is a variable of interest, while
Measurement B is very chegpmeasurédut is not of interegte.g. A may be a biochemical marker

of oxidative stress while B is the color of a trait, whiglsorrelate with this marker)If A and B

are correlatedyou can collect B for all subjectwhile you can only collect A for eandomsubset

(i.e. creating missing values on purpose). Given ngseatues inA are MAR, missing data

procedures can actually restohe statstical powerof your statistical modelas if you had

collectedA for all subjects! This design is calleehiethod measurement design (Graham et al.

2006; Enders 2010). Investigats into the planned missing data design are relatively new and an
active area of research (Baraidi and Enders 2010; Graham 2009, 2012; Rhemtulla and Little 2012),
but | expect that developmewill enormously benefit research planningsieologicaland

evolutionary studies in theearfuture.

4. 4AMETHODS FOR MISSING DATA

4.4.1 Data deletion, imputationand augmentation

Three broad categories of methods for handling missing data are: deletion, impatation
augmentation (McKinght 2007; see also Bgawa and Freckleton 2008). Data imputation has two
subcategories: single imputation and multiple imputation (MlI). Schematics in Figueodide
conceptual representations of the four ways of handling missing data (i.e. data deletion, single

imputation,MI and DA).

[Figure 45 around here]

Herel focus onMI under the MAR assumptigibecause | believe that Ml methods averentlythe
most practical and useful for ecologists and evolutionary biologistther,manyrecent software
developments have ¢ased orMI methods (van Buuren 2012pR has a number of packages

available.Despite this focus, | wilhlsoprovide brief pointers for neignorable (MNAR) missing

dataandsensitivity analysigin section 4.4.8)



4.4.2 Data deletion

Data deletiormethods such as ligtise and pahwise deletionSection4.1)are efficient ways of
dealing with missing data as long as missing data are MCARr@4gpA). Then, relevant analysis
(e.g. complete or available case analysis) will produce unbiased parastetatesvith tolerable
reductions in statistical powéef. Figure 4.2)If, say,only 1% of cases have missing values, then
deletion wouldcertainlyoffer the quickest way to deal with missing data. Howegethe fraction

of missing cases grows, pems will quickly arisel would follow GrahamOs (2009)
recommendation that, if 5% amore of cases are missimgne should use multiple imputation or

data augmentation.

4.4.3 Single imputation

Single imputation (Figure 8B) hasoftenbeen used becagishis procedure will result in a
complete data set. There are many commasid methods for single imputatj@uch as mean
imputation and regression imputati(®ection 4.1)Other single imputation methods include-hot
and colddeck and last and nexbsgervation carried forwaytb name a few (reviewed in McKnight
et al. 2007; Enders 2010)hese methods often result in severe bias in parameter estimates,
especially when missing data are not MCAR | will not discuss them furthddowever,
stochastiadegression imputation is worth mentioning, as it fothesbasis of some missing data
procedures introduced below. Like regression imputation, this method uses regression predictions to
fill in missing values in a variable by using observed variablest mdorporates noism each
predicted value by addirggror based oa residual term. Under the MAR assumptipartameter
estimates fronsingle imputation bytochastic regressi@areunbiased (for more details, see
Gelman and Hill 2007; Enders A1 Unfortunately,they suffer from biased uncertainty estimates

bfor examples.e.are too small ounrealisticallyprecise.

19%'



4.4.4 Multiple imputation techniques

Multiple imputation (MI) creates more than one filedcompleted dataset. By doing so, MI,
proposed by Rubin (1987), has solved the problem of biased uncertainty, which troubles all the
available single imputation methods. MI has become the most practical and trecbesnended
method in most caseR(bin 1996; Schafer 1999; Allison 2002; Saradnd Graham 2002,
McKnight et al. 2007; Graham 2009; Enders 2010; van Buuren) 2R@fng imputation

techniques that can generate unbiased parameter estimates under the MAR assumption, most
relevant and useful are two methods, expectation maximizatidh giorithms and Markov chain

Monte Carlo (MCMC) procedures. These methods form the basis of multiple imputation.

EM (expectation maximizatigralgorithms are a group of procedures for obtaining maximum
likelihood (ML; chapter Bestimates of statisticabrametersvhen there exist missing data and
unobserveduynobservable underlying or lateection 4.4.Y variables (for accessible descriptions,

see McKnight 2007; Molenberghs and Kenward 2007; Graham 2009; Enders 2010; for more formal
treatments, see Dester et al. 1977; Schafer 1997; Little and Rubin 200#).EM algorithm that
estimateshe descriptors of a multivariate matrix, a vector of meansafd a varianceovariance

matrix (V), consists of a twstep iterative procedure {&ep and the Mte). First, the Estep will
use a very similar method to stochastic regression imputation to estinaaigV- @ and P
from observed values and th@expectO (or fill in) missing valudext in the Mstep these
complete data are used to estinratandV andfill in missing values againThe two stepare

repeatedintii @ and ¢ converge to ML estimates. However, the EM algorithm does not provide

uncertainty esnates ¢.e) for and?. To obtains.e, bootstrapping (i.e. sampling observed data

with replacement) can be combined with the EM algoritbrobtain frequencdlistributions forr

and¥ . Thiscombinedprocedure is termed the EMB algorithm (Honker and King 2009; Honker et
al. 2011, see Figure@h). | note thatthe Amelia package mentioned above employs the EMB

algorithm to conduct MI.



[Figure 46 around here]

Onerestriction to the EM and EMB algorithms is the assumption of multivariate normallty;-or
MVN(m, V), whereall variablescome fromone distribution. That is why this type of approach is
calledjoint modelling. MCMC procedures circumvent this restrictioy usingafully conditional
specificationwhere each variable with missing values can be treated or imputed separately when it
is conditioned on other values in the datgset usingGibbs samplingvan Burren et al 2006; van
Burren and Groothui®udsoorn 2011; van Burren 2012 this process each variable can have
different distributionanddifferentlinearmodeling For example, the algorithm can apply a
binomialanda Poissongeneralized linear modé@Chapter 6¥or abinary andcountvariable
respectively This type of procedure &socalledsequential regression imputationEnders

2010).

MCMC procedures (and also Gibbs sampling) are often called Bayesian m@hagser 1)
because their goal is to create the posterior distributions of peegrbut methods using MCMC

have much wider applicatiotisanBayesian statisti¢gsThe MCMC procedure, is akin to the EM

algorithm (Schafer 1997 thatit uses a twestep iterative algorithm to finda and®. The

imputation step (step)usesstochastic regressiamith observed data. Nextye posterior step (P
step)uses this filleein dataset to construct tipesterior distributionof M and? . Then, it uses a

Monte Carlo method to sample a new setfbfind ¥ from these distributions. These new

parameter estimates are used for the subseqseah.l Iterations of the two steps create the Markov

chain, which eventuallconverges into fulkfledged posterior distributions of and ¥ (Figure

4.6B). These distributions are, in turn, used for multiple imputation (for more details, see Schafer
1997; Molenberghs and Kenward 20&riders 2010). The twi packagesmice (van Buuren and
GroothuisOudshoorn 2011) andi (Su et al. 2011 )are notable here because they hothlement

MCMC procedures usingfully conditional specification, known asultivariate imputation by



chained equations (MICE). In the statistical literature (e.g. Schafer 1997), this MCMC procedure

is often referred to as data augmentation (see below).

4.4.5 Multiple imputation steps

There are three main steps in MI: imputation, anglgsid pooling (Figure 8C). In the imputation
step, you creatm copies of completed data set by using data imputation methods such as the
EM/EMB algorithmsor the MCMC procedurdn the analysis step, you reaparatetatistical
analyse®n each omdatasets. Finally, in the pling step, you aggregate sets of results to

produce unbiased parameter and uncertainty estimates. This aggregation process is done by the

following equationgwhich are automatically calculatedR):

b==1 1, (4.4)
Mz
1",

v, =—1 se’, 4.5
W) se (4.5)
® mi1_, '

vB

Ve =V, v+, 4.7)

m

whereb is the mean offi (e.g. regression coefficients), which is a parameter estimatedteth
dataseti(= 1, 2,E, m), v is the witin-imputation variance calculated from the standard error

associated withy, vg is the betweefimputation variance estimateandvr is the total variance
a(y/Vv; is the overall standard error for). These equations forombining esmates fronm sets of

resultsis often referred to aBubinOs ruleas it was developed by Rubin (1987).

Statistical significance and confidence intervals (CIs) of pooled parameters are obtained as:
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wheredf is thenumber ofdegres of freedom used fartests or to obtaihvalues and CI

calculationsand! is the significance level (e.g. 95% ClI= 0.05).

To illustrate the three steps in multiple imputatibagain use the house sparrow dataset but this
time with the seven variableERPR, Age, Badge Fledgling HeterozygosityTarsus Wing, and
Weighi). The question this time ighich male normorphological characteristics (i&ge,
Fledgling and Heteraygosity) best predict extraair paternity (EPREPP is a common
phenomenon in the animal kingdom, especial among bird species, wherefteabaveoffspring
outside their social bonds (Griffith et al. 2002). Nakagawa and Freckleton (Z&dthe Amelia
package (i.e. the EMB algorithm) for MI withis dataset. Here | use théce packaggMCMC

algorithm)to carry out the three steps of MI.

>lib rary (mice)# loading the mice package

> imputation <- mice (PdoData,m = 5,seed = 7777)

# the imputation step with 5 copies

[E outputs omitted here E]
> analysis <- with (imputation, glm (EPP ~ Age + Fledgling + Heterozygosity,
family = quasipoisson)) # the analysis step with a GLM (see Chapters 6 and 12)

> pooling <- pool (analysis) # the pooling step



> summary (pooling)

[E outputs omitted here E]

With this threestep MI process, we obtain unbiased parameteuacertainty estimates (Tabled4.

for individual outputsseethe online Apendix).
[Table 44 around here]

In addition, you will get a value for each regression coefficient, labelled as OfmiO, which stands for
thefraction (or rate) of missing information, ". This index' varies between 0 aridand is a very
important featuref MI, because it reflects the influence of missing data on uncertainty estimates

for parameters. The fraction of missing informatiodesinedby:

!

VotV /m+2/(df +3)
VA ’

(4.11)

where all components are defthas in eqs4.5, 4.7 and4.8. As you can se#hefraction of
missing information”, reflects not onlythe fraction of missing valugbut alsotheimportanceof
missing value relation tothe complete informatioriMcKnight et al. 2007; Enders 2000 here
are two more indices in the missing data literatid¢he relative increase variance due to
missing datpand$ (the fraction of missing information assumimgs very large). They can be

expressed as:

p=YetVe/m (4.12)
VW
+

=YtV /M (4.13)
Vy

Also, " is often written using, as:



"+2/(df +3)
1+

I = (4.14)

The importance df can be more easily apmiated by examining§ (eqs.4.7, 4.13) beeuse$is the
ratio of variance due to missing data (betwemputation varianceys), in relation to the total

variance ¥r).

This index" has two practically useful properties. Fisghen missing data is nagnorable

(MNAR), " will be large(McKnight et al. 200Y, although there is no definite test to distinguish
between MAR and MNARSection 4.3.1). Li et al. (1991) proposed thap to 0.2 can been seen

as OmodestO, 0.3 as Omoderately largeO and h®asbiiggh these benchmarks should not be
used as absolute (analogous to CohenOs benchmarks, 1988), it is true that Ovghe way

missing data are handled will impact the final parameter estimates and statistical inferences (van

Buuren 2012).

Sewond, ! can be used to quantify te#ficiencyof MI. The relative efficiency% quantifies the

errors due to Mlrelative to its theoretical minimumvbich occurs whem=")
n )1
# &
=od+—( . 4.15
@ - (4.15)

For example, aln= 3 and ! = 0.5, the efficiency is 85.71 % whatm= 10 and ! = 0.5, the

efficiency is 95.24%. Seven in the latter cagkere is still much room for improvemant

efficiency. Although Rubin (1987) suggestdthtm between 3 and 10 would be sufficient. Given

thatm can be easily increased with thee ofR, we should aim for over 999%n(= 50 with ! = 0.5
produce®4= 0.9901). However, for practicality, we can mse 5 during theanalysis stepand only

use highmfor the OfinalO three steps of Ml (van Buuren 2012). Other recommended rules of thumb
or guidelines on the number wfcan be found elsewhere (e.g., Graham et al. 2007; von Hippel

2009).
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It is important tochecktheresults from the MI models of your choice. One way of doing this
(sensitivity analysis) is to run Ml using a different paekabhe threestep MI process can be done
using themi package (Su et al. 2011), which uses a different version of MCMC procedure from the

mice package.

> library (mi) # loading the mice package
>info  <- mi.info (PdoData) # getting information on each vari able
>info< - update (info, "type", list (EPP = "count", Fledgling = "count"))

# telling EPP and Fledgling are count data

> imputation <- mi (PdoData, info = info, n.imp = 5,seed = 777)
# the imputation step with 5 copies
[E outputs omitted here E]

>AandP <- gimmi (EPP ~ Age + Fledgling + Heterozygosity,
family = quasipoisson, mi.object = imputation)

# the analysis step (with GLM) and the pooling step

> display (AandP)

[E outputs omitted here E]

The results are very similéor analyses usingiice andmi (Table 44).

TheR code forboth packagegivestheimpression that Ml procedures may be very simple and
straightforward. In one sense, this is true, but there are many practical pitfalls, which need
consideationbefore and during M{e.g. convergece of the imputation steps amthich variables

should be included fadvll). | will cover such practical consideratioimssection 4.5.1.
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4.4.6 Multiple imputation with multilevel data

Multilevel structures in ecological and evolutionary data are conbroause biological processes
by nature occur in hierares; therefore an ability to handle missing data for multilevel datasets
will proofextremely usefulSo-called multilevelor hierarchical data are modelled by linear and
generalized linear mixeedffects models (LMM and GLMM respectivelghapterl3; Bolker et al.

2009 O'Hara 2009). However, proper missing data procedures for multilevel data are still in their
infancy (van Buuren 2011, 201AvailableR functions are currently very limited in botimber

and capacity. | will introduce some extensionghafaboveMI methodsutgreat care needs to be

taken when applpg them.

Data are frequeht arranged in clusters or groups (e.g., sibships, stands of trees, and the like), each
of which has its owmean (and therefore intercept and sometimes slbla@dling of missing data

in such casess not straightforwarthecause the imputatioreed to accountfor this clustering

(Graham 2009, 2012; van Buuren 2011, 2012). In other words, you have multgi¢edevectors

of means and variana®variance matricesnandV; section 4.4.4).

Longitudinal data are a case in poimagine growth data of house sparrow chicks. Hedbroods

are fed extra food every second day (this was our treatment and wivatrevimterested in); tarsus
measurements (a good size indicator) of chicks were taken at 6 different time points (2, 4, E12
days after hatching). Hereach chick is a cluster and also, each brood acts as a-legékecluster
(usually8-5 chicks). Typicato such data, some tarsus measurements are missing because some
chicks died/disappeared due to adverse weather, predation etc. This dataset of the seven variables
(ChickID, Treatment, Age, Tarsus JulianDate, BroodID and Year) includes 273 chicks from 76
broods with 403 measurements missing out of 1638 (see Cleasby et al. 2011 Ambémelix4).

Let us see how a normal MI procedure perfousiag themi packageThe coding will be exactly

the same as thegvious example, but I will introduce a LMM the analysis step using the

functionimer.mi

A




>info  <- mi.info (PdoGrowthData) # getting information on each variables

> imputation <- mi (PdoGrowthData, info = info, n.imp = 5,seed = 777)
# the imputation step with 5 copies (the default)

[E outputs omitt  edhere E]

> AandP <- Imer.mi(Tarsus ~ Treatment +1 (Age - 12) + (I (Age - 12)| ChickiD) +

(3 | BroodlID), mi.object = imputation)

# the analysis step (with LMM; see Chapter 13) and the pooling step; note that

I(Age - 12) makes treatment effect to be assess ed at 12 days after hatching
> display (AandP)

[E outputs omitted here E]

This process gives usrse (sensible) results (Tablé4ddetaled results are in the onlineppendix

4) and similar approaches have been often.udedever the validity of perfomance without

explicitly specifying clustering and its consequences are not well studied (van Buuren 2011). In the
mice package, we can actually specify grouping by incorporatingahgackage, which uses a

special MI procedure designed for thavel clustered data (Schafer 2001; Schafer & Yucel 2002).

A current limitation is that only one grouping variable is allowed.

>prep aration <- mice (PdoGrowthDatal, maxit = 0)

# runn ing an empty imputation for the two objects below as pre paration. Also
note tha tvariables in PdoGrowthData were turned into numeric as mice only takes

numeric variables.

> predictor <- preparation $ predictorMatrix # the predictor matrix

> imputation <- preparation $ method # the vector of imputation methods

> predictor ['Tarsus", "ChickID"] <- -2 # specifying ChickID as a grouping

factor
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> imputation ['Tarsus"] < - "2l.pan”

# using the 2 - level mixed modeling method from the pan package

> imputation <- mice (PdoGrowthDatal, m = 5,seed = 7777)
# the imputation step with 5 copies

[E outputs omitted here E]

> analysis <- with (imputation, Imer (Tarsus ~ Treatment +1 (Age - 12) + (I

(Age - 12) | ChickiD) +(1 | BroodID))

# the analysis step with a LMM (see Chapter 13)

> pooling <- pool (analysis) # the pooling step
>summary (pooling )

[E outputs omitted here E]

The preparation is a little involved, but the thstep MI process is the same as above. The results
from mice specifying groupingn this dataset resemble those fromin(Table 45). This is
encouraging, but recall that we wainableo include brood identitie§.e. correlated structurap a

grouping factorso one should draw conclusions cautiously

[Table 45 around here]

There is another important problem in multilevel dateere are multiple levels of predictps®
missing data processes can opeattdifferent levels. Consider twievel dataif the response is
weight at timet;, predictors can be height at timpi@evel 1) and sex (level 2)f weights are taken
at 6 different occasions:fts), missing dat@n sex for oneindividual can appear as missing values
in 6 cells. If we subject this dataset to normal Ml procedures, these 6 celleeraagignedifferent
sexe$s Wheremultiple types ofpredictorsare preseniGelman and Hill (2007) suggest data

imputationshould be carried out separately for each level (ieg. and sex Themice package
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has this capabilitybut itis currently limited toonly two levels (i.e., only one clustering variable is
allowed). Other issues associated wiitiputation inmultilevd data aredescribed in van Buuren

(2011;see also Raudenbush and Bryk 2002; Daniels and Hogan 2008; Enders 2010; Graham 2012).

4.4.7 Data augmentation

The processes and results of data augmentation@aham 2009, 2012; Enders 2040¢ similar

to thase ofMI. The main difference is that in Mihe user willseethereplaced missing values,

while DA internalizes the threstep procedures, including RubinOs rules mith', and feedback
between the imputation and analysis stépgjure 45D; sensuMcKnight et al. 2008). DA is

superior to Ml because a DA procedure is akin to the number of data imputations (or
augmentations) being infinitand also because there is a feedback process between missing data
and parameter estimation (Nakagawa and FreckQ08).However,MI has an advantag®A

can only use variabléghatare in the modelvhile Ml can include auxiliary variables, which may
often be required toonvertMNAR missingness into MAR (section 4.3.2). Therefore, in most

cases, Ml procedures amcommended over DA (Graham 2009, 2012).

In the case of multilevel datBA procedures magometimes be preferablié the response variable
is the onlyvariablewith missing dataas is the case witlhe sparrow growth data used in section
4.4.3, DA can &at such missing values appropriately by taking all the clustgrougps (e.g.
individuals, broodsand familes) into account. In Bayesian statistical packages, such features are

usually included as the default. Here, | useMi@iCglmmpackage (Hadfiel@010).

> library (MCMCglmm) # loading the MCMCglmm package

>model <- MCMCglmm(Tarsus ~ Treatment + | (Age - 12), random =~us (I (Age -

12)) : ChickID + BroodID, data = PdoGrowthData, verbose = FALSE)

# running a Bayesian LMM (see Chapter 13)

>summary (model)
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[E outputs omitted here E]

In this case, the results are very similar to those frorandmice (Table 45). Note that the
MCMCglmrfunction will not tolerate missing values in predictors. However, if multiple variables
with missing data are atintered as responses (i.e., midgponse models; Hadfield 2010), DA will
handlemissing values for all tlse responseariables As an example whichwe used this

strategy ima biresponse/bivariate metaalysis seeCleasby and NakagawaO01]). It is worth
mentioning that multresponse (or multivariate) models are closely related to structural equation
modelling (SEM), which is sometimes referred to as latent variable modelling, path analysis or

causal modeling (Chapter 8). Missing data in such msate briefly discussed later (section 4.5.3).

4.4.8 Nonignorable missing data and sensitivity analysis

As mentionedabove there are no tests to detect MNAR (agnorable) missingnesso we need to

rely on our understanding and knowledgéehafbiological systems at hanwe can however,

suspect that MNAR missingness is possible, especially when the fraction of missing inforfation (
is high (' > 0.5). Two main methods exist for nagnorable (MNAR) missingnesselection
modelsandpattern-mixture models The details of the MNAR methods are beyond the scope of
this chaptersol refer readers tocessibleaccounts elsewhere (Altsi 2002; Molenberghs and
Kenward 2007; Enders 2010). Howevewill mention some main aspects of these models. Both
models require constructing specific assumptions with regard to MNAR missinfrtbese
assumptions are incorrect, these-gmorable nedels may perform worse than the models for
ignorable missingness (i.e. Ml and DA). To put it simply, a good MAR model may be better than a

bad MNAR model (Schafer 2003; Demirtas & Schafer 2003).

The main problem of neignorable missing data is that tharean infinite number ofvaysin
which such missingnessanoccur. Naturally, very fewenerally applicablsoftware

implementations are able to cope with infinitely differeranifestation®f nonrignorable



missingness (Allison 2002). However, theramsad hocsensitivity analysis to explotbe possible
impacts of norignorable missingness on the pooled estimiates Ml under MAR (Rubin 1987).
For example, yomight suspect the age variable in the sparrow ttabtee MNAR rather than MAR
(section 4.3L). It is possible younger birder older birdsare selectively missingguch MNAR
missingness can be explored by first adding (or subtracting) imputed values undeYWdARN
thencompare pooled estimates frams sensitivity analysis (a MNAR modetp the original
estimates under MAR. Rubin (1987) suggested a 20% decrease or intiegaged valuesvould
be a sufficient sensitivity tedbut this is an arbitrary suggestion. Enders (2010) suggests £ 0.5
standard deviation of the varialdlbouldbe added. This sensitivity method can be easily

implemented using thaice package. You will find aexample analysis in the onlingppendix4.

4.5DISCUSSION

4.5.1 Practical issues

There are several practical consideratitmnsonsideprior tousingMI or DA proceduresand |

discusdive of them hereFirst, is there a minimum requirement for sample size? This question is
hard to answer. Of course, larger samples are desirable, because missing values in a small dataset
further decrease the amount diormation, which isalreadylimited (Graham 2009). However,

Graham and Schafer (1999) conducted a simulation study where they showed that a Ml procedure,
which assumes multivariate normality, performed very well with up to 18 predictors and 50%
missing dad; this means that the dataset only had around 15 degrees of fréédgnalso

demonstrated that a jaimodeling approach with thaultivariate normaassumption did well with
nonnormal data (a version of tlhherm package was used in this study; Schaf&7)although

such an approach would be limited compareskeguential regression imputatiGrsed in theni

andmice packages)
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This leads to my second point. For Ml procedures assuming a multivariate normal distribution such
as in thenorm andAmelia packages, nenormal data should be transformed first. Indeed, the
Amelia packagecomes with various transformation options (Honaker et al. 2011)-Back
transformation can be used to recover the original scale. A related issue is whether imputed data
shouldbe rounded when the original data are integéenerally it isnota good idedo do sQ

unless an imputed variable is a response variable to which a Poisson regression (Chapter 6) will be
applied (Graham 2009, 2012; Enders 2010; van Buuren 2Bd2hemore if you are using Mi
procedures with the multivariate normal assumption, categorical variables should probably be
turned into binary variables usiglgmmy coding For example, if you have a categorical variable

with four levels, this variable can becoded into three binary (dummy) variables. More generally,

p levels in a categorical variable can be turned iptb1) dummy variablesNote that coding

dummy variables bm a categorical variable can be easily donR usingdummy.code in the

psych packaggRevelle 2012seean example in the onlineppendid). If you are using

sequential regression imputation such as imthandmice packages, you need to make sure

missing values in categorical dateimputed with techniques for categorical dggay., logistic

and multinomial regression).

Third, for MI, it is important tacheck forconvergencén the imputation stegConvergence here
means thaéin imputation step reaches a set of stable s&tue vector of meansr() and a
variancecovariancematrix (V) (section 4.4.11 There are graphical functions to assess convergence
in the twoR packages, mentionddmelia andmi; see the online ppendix4). If you have trouble
with convergence in MI, transformation of skewed dagy help asskeweddatacouldbeslowing

down imputation processes (Graham 2009, 2012).

Fourth, when your statistical models include interaction terms, such terms should be included in the
imputation step in MI procedures (von Hippel 2009; Graham 2009 2012; Enders 2010; vam Buur

2012). Interaction terms usually come in tl@oms the product of two continuous variables the
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productof one continuous variable and aregegoricaldummy) variable (e.g. males and females).
When creating interaction terms, a continuous variabégls to be cesred (i.e. subtracting the

mean from each value). In fact, cenmig or scaling (i.ez-transformation) of all continuous
variabless very frequently a good idea regression modeling because this procassnake linear
models more int@retable (e.g. the intercept will be located at the means of predictors; Schielzeth
2010).Inclusion of interactions in the imputation stepésessaryhecauséf you do not consider a
particular interaction in the imputation step, the effect of thesaation can be lost even when
missing data are MCAR. This is because data imputation is carried out assuming such an interaction
does not exist (Enders 2010; Enders and Gottschall Z0hé)same applies toquadratic termas

it can be seen as an intetian with itself ( These derived terms (i.e. terms created by existing
variables) should be handled passive imputationrather than included as extra variables in the
data matrix. Passive imputation maintains relatiorssbgbween original and derive@riables

during the imputation process (von Hippel 2009; van Buuren and Gro@hdshoorn 2011).
Examples for these presses are found in the onlinpgendix4 andin van Buuren and Groothuis

Oudshoorn (2011).

Fifth, our OexpertO knowledge is usefihdMI. The rangesor possible maximand minina, for
variables with missing data can be includeddge priors in a Ml proceduresuch aghatin the
Amelia package (Honaker et al. 2011; see Nakagawa and Freckleton 2011). This process
potentially redaes bias, especially whéime fraction of missing informatiori)(is at least
moderately largeUnfortunately, the ridge prior functionality is not implemented imtilve and
mi packages (but see the argumznteeze in mice ). | recommend more than onecgage be
used to run Ml for a dataset as a form of sensitivity anal$sistion 4.4.5)If the results from

different packages disagree, one likely explanation is that the imputation step did not converge
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4.5.2 Reporting guidelines

For publication, tiis advisable to provide details and rationale of your missing data procedures,
because such procedures will probably look foreign and even outlandish to potential editors and
reviewers. Here, | will present the reporting guidelines for missing datasenfitym van Buuren
(2012). His list consists of 12 iterttzatshould be includedvhen reporting results obtained from

MI procedures.

(1) Amount of missing dat&ive the ranges of % missing values in all variables and the average %

in your dataset.

(2) Reasons for missingne$aive reasons why such missing values were present.

(3) Consequence&eport known differences between subjects with and without missing values.

(4) Method Describe which method was usetid under what assumptions (e.g. a MCMC

procedure for Ml under MAR).

(5) Software Name the software packag@.g.Amelia ) alongwith descriptions of the important

settings.

(6) Number of imputed datasetBhis ismin the imputation step (see section 4.4.5).

(7) Imputation modelReportthevariables included in the imputation step (i.e. the imputation

model) and whether any transformations were applied.

(8) Derived variablesMention what kind of derived variables (e.g. interaction and quadratic terms)

were included in the imputation step.

(9) Diagnostics Report ordiagnostics for convergence thie methodsised methods (section

4.5.1) and for checking whether imputed data are plausible.
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(10) Pooling Explainhow pooling of results was done (usually poolingmadstimates by RubinOs
rule (Section 4.4.5)f possiblealong with related indices, most importantly, the fractibmissing

information (!) and the relative efficienc@x

(11) Complete case analysiReport results from complete case analyaml compare with those

from proper missing data procedures (i.e. Ml and DA).

(12) Sensitivity analysisConductsensitivily analysesand reportheresults.Sensitivity analysis

can be in the forms of Rubin@ishocadjustment or the use of different software packages.

van Buuren (2012) considers Items 1, 2, 3, 4, 6 and 11 are esdriitiahtthe others can be
reportedn appendix or online materials. Although his list was tailored for Ml, | believe that
following his guidelines will be useful even when using DA and other missing data procedures.
Such details will be certainly helpful for editors and reviewers who desnilrar with missing data

methods.

4.5.3 Missing data in other contexts

Here | provide you with connections between this chapter and other chapters in this book. As
mentioned irSection 4.1, missing data procedures may be essential for model sgl€btpter 3
Nakagawa and Freckleton 2Q1although there isusprisinglylittle researcton this relationship
(but see Claeskens and Hjort 2008pme procedures foensoredr truncated data (Chapter 5)
involve an imputation step. In addition to theputation used in thdADApackage discussed in that
chapter, th&mi packagdgAllignol 2012) usesa KaplanMeier estimatorto impute missing

censoring time

Different forms of linear modeksuch as GLMs (Chapter 6), models with overdispersion (Chapter
12), andmixed models (Chapter 1,8an be integrated within M| procedur@she analysis step.
However, special care is required for multilevel data (Raudenbush and Bryk 2002; van Buuren

2011). All the regression models can be seen as special casestofatreguation modelling, SEM
I



(causal modelling or mediation analysis; Chapter 8). SEM has a long history of missing data
methods (reviewed in Allison 2002, Enders 20a0d the majority of stardlone SEM software
packages (e.dvplus andAMO$ come wih missing data procedures (Ml or DA). There are a

number ofotherR packages available for missing data in SkEM|udingbmem(Yuan and Zhang

2012) andsem (Zhang and Wang 2012). Mestaalysis (Chapter 9) is a type of weighted

regression model. Therefomaissing data procedures described in this chapter are apphoglale

least predictors (called moderators in the matelysis literature; Pigott 2009, 2012). However,
treating potential missing data in the response variable (i.e. effect sizécshatias attracted much
researchand has its own unique techniques, some of which are akin to selection models for MNAR

missingness (Sutton 2009).

Hadfield (2008) utilizsmissing data theory in evolutionary quantitative genetic contexts. He
showedthatMNAR missingness could beonverted tdMAR missingness using pedigree

information, which can be included as a correlation matrix in mixed models. Genetic relatedness
can act as a kind of auxiliary variable; sibbngust share similar morphological chaeast In a

similar manner, spatial correlation (Chapter 10) and phylogenetic correlation (Chapter 11) can
inform missing values in associated models because these different types of correlations are, in fact,
the sane(or very similaj mathematically in tens of specifying relationsh§g@mong data points in

the response variable (lves and Zhu 2006; Hadfield and Nakagawa 2010). Interestingly,
phylogenetic comparative analysis by Fisher et al. (2003) was the vewaBesbf using Ml in
evolutionary biologybut few followed their initiativeThe shortcomings of ignoring missing data

are nowhoweverstarting to be recognized in comparative analysis (Garamszegi and M¢ ller 2011;
GonzilezSutrez et al. 20)2vith some implementations of missing data procedapgearing (e.g.
PhyloPars ; Bruggeman et al. 2009). We can expect a rapid future integration and development of

missing data procedures in this and related areas of research.



4.5.4 Final messages

Missing data are pervasivand pose problems for manyasstical procedure$ hope | have

convinced you that we all should be using methbdstreat missing datproperly (i.e. Ml or DA),

rather than deletindataor usingsingle imputation. Importantly, it is not difficult to implement

these missing datagedures (in particular, MI) with the aid I&f | also hope thatou will now

think about the missinmgessmechanisms when plamg studies (i.e. collecting auxiliary variables).
Specially, Ithink that ecologists anevolutionary biologists can probalignefit a lot from

learning the planned missing design (Baraidi and Enders 2010; Graham et al. 2006; Graham 2009,

2012; Rhemtulla and Little 2012), although such a concept is nearly unheard of in our field.

| also presented you with some current diffimdtassociated with missing data. There are no easy
solutions for missing values in multilevel data, especially when missing values occur in multiple
levels and when clustering occurs at more than two leMelsisthe implementation of MNAR

models is steightforward. But missing data theory is an active area of research, so who knows what
the future will bring to us anth R? Enders (20103omments thaDUntil more robust MNAR

analysis models become available (and that may never happen), increasimistecaton level

of MAR analysis may be the best that we can doO.
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The three missing data mechanisms (MCAR, MAR and MNAR) and ignorabifitgtier we need to model
the mehanism of missing datan relation toobserved datéY ons), missing datdY mis), the missingness
matrix R), and th& relationshipsq; parameters that explain missingness,mechanismj The solid

arrows, dotted arrows, and arrovs with crosesrepregnts €onnectio®Opossible connectidandOno
connectionQespectivelyThe lines connecting ignability and missingnesgroupthe three mechanisn

into the twoignorability categoriesAlso no pure forms of MCAR, MAR and MNAR exisand all
missingress can be considered as a form of MAR missingmigisss represented by the shaded continuum

bar on the leftModified from Nakagawa and Freckleton (2011).
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Figure 4.2
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Variable 1

Bivariate illustrations of the three missing data mechanisms and consequeroeSI@AR with

40% missing value§40%), B) MCAR with 80% missing value0%), C) MAR (40%), D) MAR

(80%), E) MNAR @0%) andF) MNAR (80%) Solid circles are observed data and empty circles

are missing data; dotted lines represtmiedslopes while solidines were estimated from observed

data.
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Figure 4.3
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A plot of missing data patterns of the three variables (Badge, Age and Tarsus), producedidstiye

function in theAmelia package (Honaker et al. 2011). See textrforedetails.

%$



Figure 44
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Paired panel plots of the data matri>and missingness matrRk for the house sparrow dataset,
created by theairs.panels function in thepsych library (Beaujean 2012)arsus, Age, and
Badge are numerical valuesYn while Tarsus.1, Age.1, and Badfédicate missingness for these
values, respectivelythe upper triangle panels show Spearman correlations (NA means Onot
available®), while the lower triangle panels show scatterplots with Ifeesy weighted
scatterplot smoothindines. The diagaals show histogram3.heeis some evidenctor MAR
because theorrelation between Tarsus aBddge.lis high {s= 0.67). Similarly, themoderate
correlation between Tarsus and Abés = -0.20)suggestshat wemayhave missing data in Age

when birds hve smalletarsus size.
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Figure 4.5
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Deletion ‘ Analysis

A Data deletion

B Single imputation
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Augmentation and analysis
Diagrams illustrating the process of A) data deletion, B) single imputation, C) multiple impaatioD)
data augmentation. OBiasedO estimates mean biased parameter, b&iBedtasacertainty estimates
both.A circle represents a datasand holes in theircle represent missing valueSuch holes can be deleted
(A) orfilled in (B-D). A square represents a set of estimated param#terdegree of bias in estimation is
representetdy a gray scalewith darler shadebeinglessbiased See text for detail@his figure was

modifiedfrom Nakagawa and Frecklet@008).
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Figure 4.6
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Schematics illustrating the process of A) the EM
(expectation maximizatiognd EMB(expectation
maximizationwith bootstrappinggalgorithm with the
E-step (expectation) and-8tep (maximization), and

B) the MCMC procedure with thestep (imputation)

and the Pstep (posterior)r is a vector of the means

and ¥ is a varianceovariance matxi. Thicker arrows

represent iterative process&ge text for details.
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Table 4.1

Badge size (mm) and Age (yr) informatifmr 10 house sparrow malesge consists of 4 different types of

datasets according to theechanisnof missing valuesht): Completedata, MCAR data, MAR data and

MNAR data.
Bird Badge Age
(Case) Complete Complete MCAR MAR MNAR
1 31.5 1 1 b 1
2 33.5 2 b b 2
3 344 3 3 b 3
4 35.1 1 b 1 1
5 354 2 2 2 2
6 36.7 4 4 4 b
7 37.8 2 2 2 2
8 38.8 4 4 4 b
9 40.3 3 3 3 3
10 41.5 4 b 4 b

%(



Table 4.2

An illustrative example of a data Ség,s with three variablesvg-vs; Mis = missing observations and Obs =
observed values) and its missingnésgthe recording of/;-vs into binary variablesni- ms); modified from
Nakagawa and Freckleton (201Mpte thatvs is not measuredt is included here for illustrative purposes

but usuallywould not bea part ofY andR.

Data [Y = (Yobs, Y mis)] MissingnessR]

Case V1 V2 V3 mz mo ms3
1 Obs Mis Mis 0 1 1
2 Obs Obs Mis 0 0 1
3 Obs Obs Mis 0 0 1
4 Obs Mis Mis 0 1 1
5 Obs Obs Mis 0 0 1
6 Obs Obs Mis 0 0 1
7 Obs Obs Mis 0 0 1
8 Obs Mis Mis 0 1 1
9 Obs Mis Mis 0 1 1

10 Obs Obs Mis 0 0 1
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Table 4.3

The estimates afescriptive statistics for Variable 2 (see the main text) amdstimategorm regression

analysisof Variable 2 against Variable(tomplete case analysis), usihg complete dataset atigethree

types ofdatesset with missing valuefMCAR, MAR andMNAR) in two scenarios whereé% or 80%wof

Variable 2are missingthe total sample size,= 200; no missing values in Variable The truevalue for

each parameterigt =0, / '=1.414 ! =0, ! =1land o, = 1; the mean (1) and standard deviatior ()

are br Variable 2,/ and !/ are the intesept andslope respectively, and, is the residual standard

deviation.For correspondingplots, see Figure 4.2

e S S R
No missing data 0.091 1.464  -0.052 0.075 1.069 0.0M 1.055
MCAR (40%) 0.129 1.415  -0.019 0.101 0.961 0.106 1.092
MCAR (80%) 0.189 1.351  -0.063 0.155 0.930 0.145 0.950
MAR (40%) 0.723 1.308  -0.139 0.170 1.136 0.177 1.131
MAR (80%) 1.3% 116  -0.374 0.510 1.219 0.341 1.038
MNAR (40%) 1.040 0.9 0.700 0.095 0.580 0.098 0.831
MNAR (80%) 2.093 0.811 1.499 0.186 0.645 0.163 0.691
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Table 44

Results ofanalyses for the house spaw data, usingomplete case analysmijce , andmi (the later two

are multiple imputation via MCMC procedures). Estimatesifimice andmi are the pooled model

averaged parameter estimates from the five imputed datasetS)( pooled regression coeiients (b ),

overall standard erro&.e.(«/vT ), 95% confidence interva(Cl), and the fraction of missing information

("). For details, setheonline Appendix4.

Procedure Predictor Estimate s.e. Lower CI  Uppe CI "
Complete case analysi Intercept -1.733 2.391 -7.009 2.466 b
Age 0.479 0.273 -0.062 1.020 b
Fledgling 0.090 0.132 -0.155 0.368 b
Heterozygosity 0.167 2.232 -3.929 4.899 b
mice Intercept -3.389 2.406 -8.343 1.565 0.335
Age 0.750 0.214 0.315 1.184 0.258
Fledgling -0.040 0.094 -0.227 0.148 0.099
Heterozygosity 1.605 2.258 -3.102 6.312 0.392
mi Intercept -3.62%4 2.416 b b b
Age 0.782 0.236 b b b
Fledgling -0.046 0.099 b b b
Heterozygosity 1.844 2221 b b b




Table 45

Results of angkes for house sparrow data, treated msilélevel datasetEstimates arGom four
procedures: complete case analylikusing both themice and mi packagesandDA usingMCMCgimm

Estimatesfommice andmi are the pooled modelveraged parameter esttes from the five imputed
datasetsri = 5), pooled regression coefficiert J, overall standard erros,e.(/V; ), 95% confidence

interval (CI) and the fraction of missing informatiof).( For MCMCgimirithe etimates are posterior
meanss.e.are standard deviation of the posterior distributions of the estinaai@ €| represents credible

intervals. Only the results from the fixed factors are predefi® details, see thAppendix4.

Procedure Predictor Estimate s.e. Lower CI Upper CI "
Complete case analysi Intercept 18.110 0.152 17.807 18.413 b
Treatment 0.167 0.160 -0.15 0.486 b
Age 1.143 0.011 1.122 1.165 b
mice Intercept 17.880 0.362 17.168 18.592 0.020
Treatment 0.316 0.229 -0.133 0.766 0.028
Age 1.157 0.009 1.139 1174 0.097
mi Intercept 18.14 0.208 b b b
Treatment 0.259 0.241 b b P
Age 1.147 0.010 b b b
MCMCglmm Intercept 18.015 0.402 17.171 18.720 b
Treatment 0.355 0.247 -0.106 0.837 b
Age 1.169 0.011 1.149 1.192 b
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Glossary

List-wise deletion Deletion of rows (cases) that contain one or more missing values in a dataset
Complete case analysiAnalysis where one only usesvs (cases) that do not have missing values

Pair-wise deletion In bivariate analysis (e.g. correlation analysigleting casewhere missing values
occurin one or both variablegor that analysis only.

Biased parameter estimatesSystematic deviation from true estimates of paramatehsdingregression
coefficients and variance components

Biased uncertainty estimatesSystemat deviationfrom true estimates of uncertainty, i.e. standard errors
and confidence (credible) intervals

Available case analysisAnalysis where one only uses rows (cases) that do not have missingagines
complete case analysis, adjusing the rumber of cases depending on which variables are used for a
particularmodel Step-wise regression often uses available case analysis

Available variable analysis Analysis where one only uses variables that do not have any missing values
Mean imputation: The use of the mean of a variable to fill in missing values for that variable
Regression imputation The use of regression predictidoill in missing values

Single imputation: Any imputation procesthat createsnly one copy of a datas&t whichmissingvalues
arereplacedoy imputed values

Multiple imputation : An imputation procesthatcreatesnany copies of a dataset withissing values
replacedby imputed values

Data augmentation A processn which missing data imputation and data analigsssombinedandthese
two steps providéeedback to each other

Missing data theory Theoryon how missing values arise (Donald RubinOs missing data mechanisms) and
how such missing values can be best trefitedata analysis

Mi ssing data mechanismsThestatistical rehtionship between observatioaisd the probability of missing
data

MCAR (missing completely at randomitissing values are distributed at random, or they are not related to
other variables

MAR (missing at randomMissing valuesredistributed at random after controlling for other variables.

MNAR (missing not at randomMissing values are not distributed randopalgd they are related to
unobserved data (i.e. missing values themselves and/eeoorded variables)

Missing data pdtern: A description of which values are missing in a data set

MissingnessA recoding of a data matrix in binary matrix with missing values as 1 and-nassing
values as 0
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Ignorability : In missing data theoryf missing data areither MCAR or MAR, we do not need to model the
way in which they are missirgit is Ggnorabled

Planned missing data designDesigning a study deliberately including missing values, for example, to
reduce the cost of the stuly measuring a loweost variable in all idividuals but a correlated higtost
variable only in some.

Auxiliary variables: Variables that are included in an imputation process to increase the aafuracy
imputed values; such variables are strongly correlated with variables with missing values.

Joint modeling animputation approac whichall (multivariat§ missing values in a dataset argputed
at onceassuming a multivariateormal distribution.

Fully conditional specification: An imputation process where each variable can be imputed stparhen
each variable is conditional on other values in the. data

Sequential regression imputation Seefully conditional specification

M ultivariate imputation by chained equation (MICE) : An imputation process usirfglly conditional
specification

Fraction of missing information: A quantity reflectinghe fraction of missing values well as the
information content of thosmissing values

Relative efficiency The number and importance of errors dumtdtiple imputation relative to the
minimum posible number of errors. This depends on the fraction of missing information and the number of
sets of imputed data.

Selection models One ofthecommon nedeling approaches used when missing @& norignorable (i.e.
MNAR).

Pattern-mixture models. One d thecommon modeling approaches used when missing data are non
ignorable (i.e. MNAR)

Dummy coding: Binary recoding of categorical variables; categonealableswith mlevelsarerecorded
into b1 binary variables

Passive imputation An imputation nethod used fomissing values idlerived variables such as
interactions, quadratierms and transformed variables
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