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4.1 INTRODUCTION   

In an ideal world, your dataset would always be perfect without any missing data. But perfect 

datasets are rare in ecology and evolution, or in any other field. Missing data haunts every type of 

ecological or evolutionary data: observational, experimental, comparative, or meta-analytic. But this 

issue is rarely addressed in research articles. Why? Researchers often play down the presence of 

missing data in their studies, because it may be perceived as a weakness of their work (van Buuren 

2012); this tendency has been confirmed in medical trials (Wood et al. 2004), educational research 

(Peugh and Enders 2004) and psychology (Bonder 2006). I speculate that many ecologists also play 

down the issue of missing data.  

The most common way of handling missing data is called list-wise deletion: researchers delete 

cases (or rows/lists) containing missing values and run a model, e.g. a GLM (Chapter 13) using the 

dataset without missing values (known as complete case analysis). While common, few researchers 

explicitly state that they are using this approach. Another common practice that is usually not 

explicit involves statistics performed on pairs of points, like correlation analysis. For example, in 

analyzing the correlations among x, y, and z, we may be missing some data for each variable. 

Missing a value for x in some cases still allows one to use y and z from those cases. This is called 

pair -wise deletion, and it can often be noticed by seeing that there are different sample sizes for 
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different correlations. List-wise and pair-wise deletion are often the default procedures used by 

statistical software.  

What is wrong with deletion? The problems are two-fold: 1) loss of information (i.e., reduction in 

statistical power) and 2) potential bias in parameter estimates under most of circumstances (bias 

here means systematic deviation from population or true parameter values; Nakagawa and Hauber 

2011).  

To see the impact on statistical power, imagine a dataset with 12 variables. Say only 5% of each 

variable is missing, without any consistent patterns. Using complete case analysis, we would lose 

approximately 43% of all cases. The resulting reduction in statistical power is fairly substantial. To 

ameliorate the reduction in power, some researchers use step-wise regression approaches called 

available case analysis, where cases are deleted if they are missing values needed to estimate a 

model, but the same cases are included for simpler models not requiring those values. For example, 

a full model would contain 12 variables with ~43% of cases missing, while a reduced model might 

have 3 variables with ~10% missing. Are parameter estimates or indices like R2 from these different 

models comparable? Certainly one cannot use information criteria such as AIC (Akaike Information 

Criteria; see Chapter 3) for model selection procedures because these procedures require a complete 

case analysis. Such model selection can only be done using available variable analysis that only 

considers variables with complete data. However, this approach can exclude key information (e.g., 

Nakagawa and Freckleton 2011).  

With regard to the bias problem in deleting missing data, cases are often missing for underlying 

biological reasons, so that parameter estimates from both complete case and available case analyses 

are often biased. For example, older or ÔshyÕ animals are difficult to catch in the field (Brio and 

Dingemanse 2009), so that their information may be systematically missing, leading to biased 

parameter estimates.   
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Some researchers Ôfill-inÕ or impute missing values to circumvent these problems. You may be 

familiar with filling missing values with the sample mean value (mean imputation). Indeed, in 

comparative phylogenetic analysis it has been common to replace missing values with taxon means 

(see Freckleton et al. 2003). Alternatively, missing data imputation can be slightly more 

sophisticated, using regression predictions to fill in missing cases (regression imputation). 

However, these methods, known as single imputation techniques, result in uncertainty estimates 

that do not account for the uncertainty that the missing values would have contributed (e.g. too 

small a standard error, or too narrow a confidence interval; McKnight et al. 2007; Graham 2009 

2012; Enders 2010). Thus, the rate of Type I error (Chapter 2) increases; I call this phenomenon 

biased uncertainty estimates. These simple fixes using single imputation will yield biased 

parameter estimates. 

 The good news is that we now have solutions that combat missing data problems. They come in 

two forms: multiple imputation  (MI), and data augmentation (DA; in the statistical literature, the 

term data augmentation is used in different ways, but I follow the usage of McKnight et al. 2007). 

The bad news is that very few researchers in ecology and evolution use such statistical tools 

(Nakagawa and Freckleton 2008). MI and DA have been available to us since the late 1980Õs, with 

some key publications in 1987 (Allison 1987; Tanner and Wong 1987; Little and Rubin 1987; 

Rubin 1987). In the beginning, few of us could use such techniques as they were not implemented 

in statistical packages or programs until the late 1990Õs; There are now R packages (e.g. norm and 

pan; Schafter 1997, 2001) that make MI and DA relatively easy to use for many analyses (for 

reviews of statistical software for treating missing data, see Horton and Kleinman 2007; Yucel 

2011). Why the lag in using such important statistical tools? Many of us may have never heard 

about missing data theory until now because it is not a part of our general training as ecologists 

and evolutionary biologists. However, the main reason may be psychological. It certainly feels a bit 

uneasy for me to Ômake upÕ data to fill in gaps! We are not alone: medical and social scientists have 
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also been exposed to methods for handling missing data, but they have also been slow to adopt 

them (Raghunathan 2004; Graham 2009; Sterne et al. 2009; Enders 2010). Researchers often may 

see procedures such as data imputation and augmentation as cheating, or even as something akin to 

voodoo. It turns out that our current quick fixes are a lot more like voodoo! As Todd Little (cited in 

Enders, 2010) puts it: ÒFor most of our scientific history, we have approached missing data much 

like a doctor from the ancient world might use bloodletting to cure disease or amputation to stem 

infection (e.g. removing the infected parts of oneÕs data by using list-wise or pair-wise deletion)Ó; It 

is high time for us to finally start using missing data procedures in our analyses. This is especially 

so given the recent growth in the number of R packages that can handle missing data appropriately 

using MI and DA (Nakagawa and Freckleton 2011; van Buuren 2012).  

In this chapter, I explain and demonstrate the powerful missing data procedures now available to 

researchers in ecology and evolution (e.g. Charlier et al. 2009; Gonz‡lez-Su‡rez et al. 2012). I first 

describe the basics and terminology of missing data theory, particularly the three different classes of 

missing data (missing data mechanisms). I then explain how different missing data mechanisms 

can be detected and at least for some of the classes, how to prevented in the first place. The main 

section will cover three types of methods for analyzing missing data (deletion, augmentation, and 

imputation) with emphasis on MI , practical issues associated with missing data procedures, 

guidelines for the presentation of results and the connection between missing data issues and other 

chapters in this book.  

4.2 MECHANISMS OF MISSING  DATA  

   4.2.1 Missing data theory, mechanisms and patterns 

Rubin (1976) and his colleagues (e.g. Little and Rubin 1987, 2002; Little 1992, 1995) established 

the foundations of missing data theory. Central to missing data theory is his classification of 

missing data problems into three categories: 1) missing completely at random (MCAR ), 2) missing 
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at random (MAR ), and 3) missing not at random (MNAR ). These three classes of missing data are 

referred to as missing data mechanisms (for a slightly different classification, see Gelman and Hill 

2007). Despite the name, these are not causal explanations for missing data. Missing data 

mechanisms represent the statistical relationship between observations (variables) and the 

probability of missing data. The other term easy to confuse with missing data mechanisms is 

missing data patterns; these are the descriptions of which values are missing in a dataset (see 

section 4.3.1).  

   4.2.2 Informal definitions of missing data mechanisms 

Here, I use part of a dataset from the house sparrow (Passer domesticus) population on Lundy 

Island, UK (Nakagawa et al. 2007a; Schroeder et al. 2012; I will use a full version of this dataset in 

section 4.4.5). Male sparrows possess what is termed a Ôbadge of statusÕ, which has been shown to 

reflect male fighting ability (Nakagawa et al. 2007b). The badge of status is a black throat patch, 

which substantially varies in size, with larger badges resenting superior fighters. Table 4.1 contains 

the information on badge size (Badge) and male age (Age) from 10 males, and also on the three 

missing data mechanisms in the context of this dataset. The MCAR mechanism occurs when the 

probability of missing data in one variable is not related to any other variable in the dataset. The 

variable, Age[MCAR] in Table 4.1 is missing completely at random (MCAR) because the probability 

of missing data on Age is not related to the other observed variable, Badge.  

[Table 4.1 around here] 

The MAR mechanism is at work when the probability of missing data in a variable is related to 

some other variable(s) in the dataset.  If you are wondering ÒSo how is this missing at random?Ó 

you are not alone: the term confuses many people. It is helpful to see MAR as Ôconditionally 

missing at random;Õ that is, missing at random after controlling for all other related variables 

(Graham 2009). In our sparrow example, Age[MAR]  is missing at random (MAR) because the 
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missing values are associated with the smallest three values of Badge. Once you control for Badge, 

data on Age are missing completely at random, MCAR. This scenario may happen, for example, if 

immigrants to this sparrow population (whose age is unknown to the researcher) somehow have a 

smaller badge size. .  

The MNAR mechanism happens when the probability of missing data in a variable is associated 

with this variable itself, even after controlling for other observed (related) variables. Age[MNAR]  is 

missing not at random  because the three missing values are 4-year old birds, and it is known that 

older males tend to have larger badge sizes. Such a scenario is plausible if a study on this sparrow 

population started 3 years ago, and we do not know the exact age of older birds.  

   4.2.3 Formal definitions of missing data mechanisms 

Now to provide more formal/mathematical definitions of the missing data mechanisms, I introduce 

relevant notation and terminology from missing data theory.  

• Y is a matrix of the entire data set (including response and predictor variables) that can be 

decomposed into Yobs and Ymis (the observed and missing parts of the data);  

• R is a missingness matrix Ð these are indicators of whether the corresponding locations in Y 

are observed (0) or missing (1); and  

• q is a vector of parameters describing the relationship between missingness, R and the data 

set, Y (Table 4.2; see Little and Rubin 2002; McKnight et al. 2007; Molenberghs and 

Kenward 2007; Enders 2010; Graham 2012). Importantly, q is known as the mechanism of 

missing data and provides the basis for distinguishing between: MCAR, MAR and MNAR. 

An intuitive interpretation of q is that the content of q indicates one of the three missing data 

mechanisms. 

[Table 4.2 around here] 
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It is the easiest to begin with the description of MNAR data because it includes all these 

mathematical terms. The three mechanisms, in relation to the concepts of missingness and 

ignorability (discussed later in this section), are summarized in Figure 4.1.  

 Following Ender (2010), the probability distribution for MNAR can be written as: 

 p(R | Yobs, Ymis, q).     (4.1) 

This says that the probability of whether a position in R  is 0 or 1 depends on both Yobs and Ymis, 

and this relationship is governed by q. In Table 4.2, v2 is MNAR, if missing values depend on v2 

itself. Such missing values can (but need not) be related to v1, a completely observed variable. In 

this particular case, the probability of MNAR missingness depends completely on Ymis, i.e. p(R 

|Ymis, q), which is a special case of missing values are both related to both v1 and v2 (i.e. e.q. 4.1). 

Another more complicated, form of MNAR is when v2 depends on a completely unobserved 

variable, e.g., v3 in Table 4.2. For a concrete example in Table 4.1, the MAR missing values in Age 

would become MNAR, if we had no measurement of badge size (Badge). In practice one can only 

suspect or assume MNAR, because it depends on the unobserved values in Ymis (but see section 

4.4.5).  

The probability distribution for MAR can be written as: 

 p(R | Yobs, q).      (4.2) 

This means that missingness depends only on Yobs, and this relationship is governed by q. In Table 

4.2, v2 is MAR if its missing values depend on the observed variable v1.  

Finally, the probability distribution for MCAR is expressed as: 

 p(R | q).       (4.3) 
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This says that the probability of missingness does not depend on the data (neither Yobs nor Ymis), but 

that whether positions in R take 0 or 1 is still governed by q. So v2 is MCAR if its missing values 

do not depend on an observed variable (v1) or the values of v2 itself.  

Ignorability  is another important concept; note that the same word is used with other meanings in 

other statistical contexts; for examples, see Gelman and Hill 2007). MNAR missingness is Ônon-

ignorableÕ whereas MAR and MCAR are ÔignorableÕ (Rubin and Little 2002). Ignorability refers to 

whether we can ignore the way in which data are missing when we impute or augment missing data; 

it does not imply that one can remove missing data! In the MAR and MCAR mechanisms, 

imputation and augmentation do not require that we make specific assumptions about how data are 

missing. On the other hand, non-ignorable MNAR missingness requires such assumptions to build a 

model to fill in missing values (section 4.4.8).  

[Figure 4.1 around here] 

   4.2.4 Consequences of missing data mechanisms: an example 

Figure 4.2 shows the three different mechanisms of missing data in a bivariate example in two 

situations where % missing values are different (40% and 80% from the sample size of 200). The 

missing values are all in Variable 2 (plotted as a response variable; analogous to v2 in Table 4.2) but 

not in Variable 1 (analogous to v1 in Table 4.2). The population true mean ( ) and standard 

deviation ( ) for Variable 2 are 0 and 1.41 (variance, "= 2), respectively, while the true 

intercept ( ), slope ( ) and residual variance ( ) for the linear relationship between Variable 1 

and Variable 2, are 0, 1 and 1, respectively. Parameter estimates from analysis from ÔobservedÕ data 

of three missing data mechanisms (i.e. complete case analysis) are summarized in Table 4.3.  

[Figure 4.2 around here] 

[Table 4.3 around here] 
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As we would expect, parameter estimates from the regression, using the complete dataset are close 

to population true values (Table 4.3). As theory suggests, no obvious bias in the parameter estimates 

from the MCAR datasets can be detected, although standard errors for regression estimates 

increased (i.e., there is less statistical power). In general, many parameter estimates from the MAR 

datasets seem to be biased to some certain extent. Noticeably, many parameter estimates from the 

MNAR datasets seem to be severely biased. In the datasets of all the three mechanisms, deviations 

from true estimates usually increase when the percentage of missing values is raised, i.e. form 40% 

to 80% (all relevant R code is provided in the online Appendix 4).  

In real datasets, the consequences of missing data will be further complicated by the existence of 

more than two variables and the presence of missing values in more than one variable. Furthermore, 

it is usually impossible to unambiguously classify cases into the three mechanisms (Graham 2009, 

2012). For example, it is hard to imagine missing data that are entirely unrelated to other variables 

in the dataset, i.e., purely MCAR. Missing data in real datasets are somewhere on a continuum from 

MCAR through MAR and to MNAR, as depicted in Figure 4.1. In a sense, it may be easiest to think 

of all missing data as belonging to MAR to some degree because MAR resides in the middle of this 

continuum. Further details can be found in Nakagawa and Freckleton (2008 and 2011). 

4.3 DIAGNOSTICS AND PREVENTION  

   4.3.1 Diagnosing missing data mechanisms 

In this and the next section (section 4.4), I will use snippets of R code along with example datasets. 

The full R code, related datasets, and more detailed explanations of these are all found in the online 

Appendix 4. 

It is straightforward to visualize missing data patterns with an aid from R functions. As an example, 

I again use a part of Lundy male sparrow data (Table 4.1). The missingmap  function in the 

Amelia  package (Honker et al. 2011) produces Figure 4.3, which is a visual representation of 
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missing data patterns or in fact, a matrix, R (missingness). Plotting missing data patterns can 

sometimes reveal unexpected patterns such as a cluster of missing values, which were not 

noticeable during data collection stages. Then we can ask why such patterns exist. However, 

missing data patterns alone do not tell us about which missing data mechanism(s) underlie our data.  

[Figure 4.3 around here] 

By deleting cases where missing values exist (complete case analysis), we implicitly assume 

MCAR. There are a number of ways to diagnose whether or not missing data can be classified as 

MCAR (reviewed in McKnight et al. 2007). However, as we have learned, MCAR is an unrealistic 

assumption because such precise missingness is implausible (Little and Rubin 2002; Graham 2009, 

2012; see Figure 4.1) and also because biological and/or practical reasons generally underlie 

missingness (Nakagawa and Freckleton 2008). MAR Ð for which the pattern of missingness is 

ignorable Ð is a more realistic assumption. In fact, the MAR assumption is central to many missing 

data procedures (Section 4.4). My main recommendation is to deal with missing values under the 

assumption of MAR even when all missing data are diagnosed as MCAR (see Schafer and Graham 

2002; Graham 2009, 2012; Enders 2010). 

When is it really useful to identify missing data mechanisms? You may want to see MCAR 

diagnostics if you have to resort to missing data deletion. The simplest method is to conduct a series 

of t tests on values between observed and missing groups in each variable (0 being the one group 

and 1 the other in missingness R; see Table 4.2), which assess mean difference in the other 

variables in the dataset. If all t-tests are non-significant, then you can say missing values in that 

dataset are MCAR; if not, they are MAR or MNAR. However, as the size of matrix grows, 

performing and assessing multiple t-tests gets tedious very quickly and also may result in Type I 

errors. Little (1988) proposed a multivariate version of this procedure, which produces one statistic 

(a  value) for the entire dataset (for details, see Little 1988; McKnight et al. 2007; Enders 2012). ! 2
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This extension of the t-test approach can be carried out by the LittleMCAR  function in the 

BaylorEdPsych  R package (Beaujean 2012).  

For the example dataset (PdoDataPart , see online Appendix 4), the test produces  = 35.65 and p 

< 0.0001. We can conclude that this dataset contains non-MCAR missingness. This test has the 

advantage of being simple, but has two major shortcomings: 1) the dataset may often have weak 

statistical power, especially when the observed and missing groups are unbalanced and 2) a non-

significant result can be obtained even if missingness is MAR or MNAR. This occurs when, for 

example, missing values in a variable are related to the high and low values of another variable.  

There are neither statistical tests nor visual techniques to distinguish between MAR and MNAR 

(McKnight et al. 2007; van Buuren 2012). This is not surprising given that the probability 

distributions for MAR (p(R | Yobs, q)) and MNAR (p(R | Yobs, Ymi, q)) differ only in that MNAR 

depends on Ymi (unobserved values), and we have no way of knowing what unobserved values 

were. Rather, we need to ascertain whether or not missing values are considered MNAR from our 

understanding of the biological systems under investigation. For example, in the MNAR example in 

Table 4.1, age information was missing from the oldest birds, because of the limited duration of the 

study. 

Graphical methods for diagnosing missingness are generally much more useful. Visualizations of 

the relationship between the original dataset and missingness (e.g., m1 in Table 4.2) is easily done 

in R, using built-in functions and the pairs.panels  function from the psych  package (Revelle 

2012). 

> Missingness  <-  ifelse  (is.na  (PdoPartData)  == TRUE, 0, 1)  

# creating the missingness matrix  

> MissDat a <-  data.frame  (PdoPartData, Missingness)  

# combining the original dataset with the missingness matrix  

! 5
2
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> library  (psych) # loading the psych package  

> pairs.panels  (MissData, ellipses  = FALSE, method  = "spearman")  

[É  a figure will appear  É]  

The resulting figure (Figure 4.4) contains visual information on all the original variables and 

missingness variables, as well as information about all the correlations among these variables. I 

encourage the reader to study this figure to identify non-MCAR missingness. 

[Figure 4.4 around here] 

   4.3.2 How to prevent MNAR missingness 

As the father of modern statistics, Ronald A. Fisher is reported to have said, Òthe best solution to 

handling missing data is to have none,Ó but this is probably not the easiest solution (McKnight et al. 

2007). Missing data prevention requires careful planning and execution of studies and experiments, 

as well as a good understanding of the biological systems at hand, and even then, missing data are 

often unavoidable (Nakagawa and Freckleton 2008). However, there is a trick that you can use to 

make missing values much easier to handle. The trick is to begin your study with a data collection 

plan, wherein you will turn MNAR missingness into MAR missingness. In other words, this means 

altering non-ignorable missing values to make them ignorable; missing values can then be handled 

with ordinary missing data procedures such as multiple MI (or without making special assumptions 

due to MNAR; see Schafer and Graham 2002; Graham 2009, 2012).  

When you have a good understanding of your biological system, you usually know which variables 

will be likely to have missing values. If you collect data on known correlates of these missing-prone 

variables your missing values will be more likely to be MAR than MNAR. These correlates are 

called auxiliary variables in the missing data literature. An extension of this idea is the planned 

missing data design, in which you make the use of the MAR assumption to deliberately 

incorporate MAR missingness in your data collection. This may seem very strange at first, but think 
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of a situation where Measurement A is very expensive to collect and is a variable of interest, while 

Measurement B is very cheap to measure but is not of interest (e.g. A may be a biochemical marker 

of oxidative stress while B is the color of a trait, which is correlated with this marker). If A and B 

are correlated, you can collect B for all subjects, while you can only collect A for a random subset 

(i.e. creating missing values on purpose). Given missing values in A are MAR, missing data 

procedures can actually restore the statistical power of your statistical models as if you had 

collected A for all subjects! This design is called 2-method measurement design (Graham et al. 

2006; Enders 2010). Investigations into the planned missing data design are relatively new and an 

active area of research (Baraidi and Enders 2010; Graham 2009, 2012; Rhemtulla and Little 2012), 

but I expect that developments will enormously benefit research planning in ecological and 

evolutionary studies in the near future.  

4.4 METHODS FOR MISSING DATA  

   4.4.1 Data deletion, imputation, and augmentation 

Three broad categories of methods for handling missing data are: deletion, imputation, and 

augmentation (McKinght 2007; see also Nakagawa and Freckleton 2008). Data imputation has two 

subcategories: single imputation and multiple imputation (MI). Schematics in Figure 4.5 provide 

conceptual representations of the four ways of handling missing data (i.e. data deletion, single 

imputation, MI and DA).  

[Figure 4.5 around here] 

Here I focus on MI under the MAR assumption, because I believe that MI methods are currently the 

most practical and useful for ecologists and evolutionary biologists. Further, many recent software 

developments have focused on MI  methods (van Buuren 2012), so R has a number of packages 

available. Despite this focus, I will also provide brief pointers for non-ignorable (MNAR) missing 

data and sensitivity analysis (in section 4.4.8).  
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   4.4.2 Data deletion 

Data deletion methods such as list-wise and pair-wise deletion (Section 4.1) are efficient ways of 

dealing with missing data as long as missing data are MCAR (Figure 4.5A). Then, relevant analysis 

(e.g. complete or available case analysis) will produce unbiased parameter estimates with tolerable 

reductions in statistical power (cf. Figure 4.2). If, say, only 1% of cases have missing values, then 

deletion would certainly offer the quickest way to deal with missing data. However as the fraction 

of missing cases grows, problems will quickly arise. I would follow GrahamÕs (2009) 

recommendation that, if 5% or more of cases are missing, one should use multiple imputation or 

data augmentation.  

   4.4.3 Single imputation 

Single imputation (Figure 4.5B) has often been used because this procedure will result in a 

complete data set. There are many commonly-used methods for single imputation, such as mean 

imputation and regression imputation (Section 4.1). Other single imputation methods include hot- 

and cold-deck and last and next observation carried forward, to name a few (reviewed in McKnight 

et al. 2007; Enders 2010). These methods often result in severe bias in parameter estimates, 

especially when missing data are not MCAR, so I will not discuss them further. However, 

stochastic regression imputation is worth mentioning, as it forms the basis of some missing data 

procedures introduced below. Like regression imputation, this method uses regression predictions to 

fill in missing values in a variable by using observed variables, but it incorporates noise in each 

predicted value by adding error based on a residual term. Under the MAR assumption, parameter 

estimates from single imputation by stochastic regression are unbiased (for more details, see 

Gelman and Hill 2007; Enders 2010). Unfortunately, they suffer from biased uncertainty estimates 

Ð for example, s.e. are too small or unrealistically precise.  
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   4.4.4 Multiple imputation techniques 

Multiple imputation (MI) creates more than one filled-in completed dataset. By doing so, MI, 

proposed by Rubin (1987), has solved the problem of biased uncertainty, which troubles all the 

available single imputation methods. MI has become the most practical and the best-recommended 

method in most cases (Rubin 1996; Schafer 1999; Allison 2002; Schafer and Graham 2002; 

McKnight et al. 2007; Graham 2009; Enders 2010; van Buuren 2012). Among imputation 

techniques that can generate unbiased parameter estimates under the MAR assumption, most 

relevant and useful are two methods, expectation maximization (EM) algorithms and Markov chain 

Monte Carlo (MCMC) procedures. These methods form the basis of multiple imputation."

EM (expectation maximization) algorithms are a group of procedures for obtaining maximum 

likelihood (ML; chapter 3) estimates of statistical parameters when there exist missing data and 

unobserved (unobservable underlying or latent; Section 4.4.7) variables (for accessible descriptions, 

see McKnight 2007; Molenberghs and Kenward 2007; Graham 2009; Enders 2010; for more formal 

treatments, see Dempster et al. 1977; Schafer 1997; Little and Rubin 2002). The EM algorithm that 

estimates the descriptors of a multivariate matrix, a vector of means (m) and a variance-covariance 

matrix (V), consists of a two-step iterative procedure (E-step and the M-step). First, the E-step will 

use a very similar method to stochastic regression imputation to estimate m and V",  and -" 

from observed values and then ÔexpectÕ (or fill in) missing values. Next in the M-step, these 

complete data are used to estimate m and V and fill in missing values again. The two steps are 

repeated until  and  converge to ML estimates. However, the EM algorithm does not provide 

uncertainty estimates (s.e.) for  and . To obtain s.e., bootstrapping (i.e. sampling observed data 

with replacement) can be combined with the EM algorithm to obtain frequency distributions for  

and . This combined procedure is termed the EMB algorithm (Honker and King 2009; Honker et 

al. 2011; see Figure 4.6A). I note that the Amelia  package mentioned above employs the EMB 

algorithm to conduct MI. 

öm öV

öm öV
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[Figure 4.6 around here] 

One restriction to the EM and EMB algorithms is the assumption of multivariate normality, or Y ~ 

MVN(m, V), where all variables come from one distribution. That is why this type of approach is 

called joint modelling. MCMC procedures circumvent this restriction by using a fully conditional 

specification where each variable with missing values can be treated or imputed separately when it 

is conditioned on other values in the dataset (i.e. using Gibbs sampling; van Burren et al 2006; van 

Burren and Groothuis-Oudshoorn 2011; van Burren 2012). In this process each variable can have a 

different distribution and different linear modeling. For example, the algorithm can apply a 

binomial and a Poisson generalized linear model (Chapter 6) for a binary and count variable 

respectively. This type of procedure is also called sequential regression imputation (Enders 

2010). 

MCMC procedures (and also Gibbs sampling) are often called Bayesian methods (Chapter 1) 

because their goal is to create the posterior distributions of parameters,  but  methods using MCMC 

have much wider applications than Bayesian statistics). The MCMC procedure, is akin to the EM 

algorithm (Schafer 1997) in that it uses a two-step iterative algorithm to find  and . The 

imputation step (I-step) uses stochastic regression with observed data. Next, the posterior step (P-

step) uses this filled-in dataset to construct the posterior distributions of  and . Then, it uses a 

Monte Carlo method to sample a new set of  and  from these distributions. These new 

parameter estimates are used for the subsequent I-step. Iterations of the two steps create the Markov 

chain, which eventually converges into fully-fledged posterior distributions of  and  (Figure 

4.6B). These distributions are, in turn, used for multiple imputation (for more details, see Schafer 

1997; Molenberghs and Kenward 2007; Enders 2010). The two R packages, mice  (van Buuren and 

Groothuis-Oudshoorn 2011) and mi  (Su et al. 2011), are notable here because they both implement 

MCMC procedures using a fully conditional specification, known as multivariate imputation by 

öm öV

öm öV

öm öV

öm öV



!( "

"

chained equations (MICE). In the statistical literature (e.g. Schafer 1997), this MCMC procedure 

is often referred to as data augmentation (see below). 

   4.4.5 Multiple imputation steps 

There are three main steps in MI: imputation, analysis, and pooling (Figure 4.5C). In the imputation 

step, you create m copies of completed data set by using data imputation methods such as the 

EM/EMB algorithms or the MCMC procedure. In the analysis step, you run separate statistical 

analyses on each of m datasets. Finally, in the pooling step, you aggregate m sets of results to 

produce unbiased parameter and uncertainty estimates. This aggregation process is done by the 

following equations (which are automatically calculated in R): 

 ,      (4.4) 

 ,     (4.5)

 ,    (4.6) 

 ,     (4.7) 

where  is the mean of bi (e.g. regression coefficients), which is a parameter estimated from the ith 

dataset (i = 1, 2,É, m), vW is the within-imputation variance calculated from the standard error 

associated with bi, vB is the between-imputation variance estimates, and vT is the total variance 

a(  is the overall standard error for ). These equations for combining estimates from m sets of 

results is often referred to as RubinÕs rules, as it was developed by Rubin (1987).  

Statistical significance and confidence intervals (CIs) of pooled parameters are obtained as:  

b =
1
m

bi
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m

!

vW =
1
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!
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,
    (4.8) 

 
,
      (4.9) 

    (4.10) 

where df is the number of degrees of freedom used for t-tests or to obtain t values and CI 

calculations, and !  is the significance level (e.g. 95% CI, !  = 0.05).  

To illustrate the three steps in multiple imputation, I again use the house sparrow dataset but this 

time with the seven variables (EPP, Age, Badge, Fledgling, Heterozygosity, Tarsus, Wing, and 

Weight). The question this time is which male non-morphological characteristics (i.e. Age, 

Fledgling, and Heterozygosity) best predict extra-pair paternity (EPP). EPP is a common 

phenomenon in the animal kingdom, especial among bird species, where males often have offspring 

outside their social bonds (Griffith et al. 2002).  Nakagawa and Freckleton (2011) used the Amelia  

package (i.e. the EMB algorithm) for MI with this dataset. Here I use the mice  package (MCMC 

algorithm) to carry out the three steps of MI.  

> lib rary  (mice) # loading the mice package  

> imputation  <-  mice  (PdoData, m  = 5, seed  = 7777)  

# the imputation step with 5 copies  

[É  outputs omitted here  É]  

> analysis  <-  with  (imputation, glm  (EPP ~ Age + Fledgling  + Heterozygosity,  

family  = quasipoisson)) #  the analysis step with a GLM (see Chapters 6 and 12)  

> pooling  <-  pool  (analysis) # the pooling step  

df = (m! 1) 1+
mvW

(m+1)vB

"

#$
%

&'

2

tdf =
b

vT

100(1−α )% CI = b ± tdf ,(1−α /2) vT
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> summary  (pooling)  

[É  outputs omitted here  É]  

With this three-step MI process, we obtain unbiased parameter and uncertainty estimates (Table 4.4; 

for individual outputs, see the online Appendix4).  

[Table 4.4 around here] 

In addition, you will get a value for each regression coefficient, labelled as ÔfmiÕ, which stands for 

the fraction (or rate) of missing information, ". This index " varies between 0 and 1 and is a very 

important feature of MI, because it reflects the influence of missing data on uncertainty estimates 

for parameters. The fraction of missing information is defined by:   

 ,    (4.11) 

where all components are defined as in eqs. 4.5, 4.7, and 4.8. As you can see, the fraction of 

missing information, ", reflects not only the fraction of missing values, but also the importance of 

missing values in relation to the complete information (McKnight et al. 2007; Enders 2010). There 

are two more indices in the missing data literature: # (the relative increase in variance due to 

missing data) and $ (the fraction of missing information assuming m is very large). They can be 

expressed as: 

 ,     (4.12) 

  .     (4.13) 

Also, " is often written using #, as: 

! =
vB + vB / m+ 2 / (df +3)

vT

! =
vB + vB / m

vW

! =
vB + vB / m

vT



#+"

"

 .     (4.14) 

The importance of " can be more easily appreciated by examining $ (eqs. 4.7, 4.13) because $ is the 

ratio of variance due to missing data (between-imputation variance, vB), in relation to the total 

variance (vT).  

This index " has two practically useful properties. First, when missing data is non-ignorable 

(MNAR), " will be large (McKnight et al. 2007), although there is no definite test to distinguish 

between MAR and MNAR (Section 4.3.1). Li et al. (1991) proposed that " up to 0.2 can been seen 

as ÔmodestÕ, 0.3 as Ômoderately largeÕ and 0.5 as ÔhighÕ. Although these benchmarks should not be 

used as absolute (analogous to CohenÕs benchmarks, 1988), it is true that when " > 0.5, the way 

missing data are handled will impact the final parameter estimates and statistical inferences (van 

Buuren 2012). 

Second, ! can be used to quantify the efficiency of MI. The relative efficiency (%) quantifies the 

errors due to MI, relative to its theoretical minimum (which occurs when m = ")  

 .     (4.15) 

For example, at m = 3 and ! = 0.5, the efficiency is 85.71 % while at m = 10 and ! = 0.5, the 

efficiency is 95.24%. So even in the latter case there is still much room for improvement in 

efficiency. Although Rubin (1987) suggested that m between 3 and 10 would be sufficient. Given 

that m can be easily increased with the use of R, we should aim for over 99% (m = 50 with ! = 0.5 

produces % = 0.9901). However, for practicality, we can use m = 5 during the analysis step, and only 

use high m for the ÔfinalÕ three steps of MI (van Buuren 2012). Other recommended rules of thumb 

or guidelines on the number of m can be found elsewhere (e.g., Graham et al. 2007; von Hippel 

2009). 

! =
" + 2 / (df + 3)

1+ "

! = 1+
"
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It is important to check the results from the MI models of your choice. One way of doing this 

(sensitivity analysis) is to run MI using a different package. The three-step MI process can be done 

using the mi  package (Su et al. 2011), which uses a different version of MCMC procedure from the 

mice  package. 

> library  (mi) # loading the mice package  

> info  <-  mi.info  (PdoData) # getting information on each vari able  

> info < -  update  (info, "type", list  (EPP = "count",  Fledgling  = "count"))  

# telling EPP and Fledgling are count data  

> imputation  <-  mi  (PdoData, info  = info, n.imp  = 5, seed  = 777)  

# the imputation step with 5  copies  

[É  outputs omitted here  É]  

> A andP <-  glm.mi  (EPP ~ Age + Fledgling  + Heterozygosity,  

family  = quasipoisson, mi.object  = imputation)  

# the analysis step (with GLM) and the pooling step  

> display  (AandP)  

[É  outputs omitted here  É]  

The results are very similar for analyses using mice  and mi  (Table 4.4).  

The R code for both packages gives the impression that MI procedures may be very simple and 

straightforward. In one sense, this is true, but there are many practical pitfalls, which need 

consideration before and during MI (e.g. convergence of the imputation steps and which variables 

should be included for MI ). I will cover such practical considerations in section 4.5.1.  
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   4.4.6 Multiple imputation with multilevel data 

Multilevel structures in ecological and evolutionary data are common because biological processes 

by nature occur in hierarchies; therefore an ability to handle missing data for multilevel datasets 

will proof extremely useful. So-called multilevel or hierarchical data are modelled by linear and 

generalized linear mixed-effects models (LMM and GLMM respectively; Chapter 13; Bolker et al. 

2009, O'Hara 2009). However, proper missing data procedures for multilevel data are still in their 

infancy (van Buuren 2011, 2012). Available R functions are currently very limited in both number 

and capacity. I will introduce some extensions of the above MI methods but great care needs to be 

taken when applying them. 

Data are frequently arranged in clusters or groups (e.g., sibships, stands of trees, and the like), each 

of which has its own mean (and therefore intercept and sometimes slope). Handling of missing data 

in such cases is not straightforward because the imputation needs to account for this clustering  

(Graham 2009, 2012; van Buuren 2011, 2012). In other words, you have multiple levels of vectors 

of means and variance-covariance matrices (m and V; section 4.4.4).  

Longitudinal data are a case in point; imagine growth data of house sparrow chicks. Half the broods 

are fed extra food every second day (this was our treatment and what we were interested in); tarsus 

measurements (a good size indicator) of chicks were taken at 6 different time points (2, 4, É12 

days after hatching). Here, each chick is a cluster and also, each brood acts as a higher-level cluster 

(usually3-5 chicks). Typical to such data, some tarsus measurements are missing because some 

chicks died/disappeared due to adverse weather, predation etc. This dataset of the seven variables 

(ChickID, Treatment, Age, Tarsus JulianDate, BroodID and Year) includes 273 chicks from 76 

broods, with 403 measurements missing out of 1638 (see Cleasby et al. 2011 and the Appendix 4). 

Let us see how a normal MI procedure performs using the mi  package. The coding will be exactly 

the same as the previous example, but I will introduce a LMM in the analysis step using the 

function lmer.mi . 
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> info  <-  mi.info  (PdoGrowthData) # getting information on each variables  

> imputation  <-  mi  (PdoGrowthData, info  = info, n.imp  = 5, seed  = 777)  

# the imputation step with 5 copies (the default)  

[É  outputs omitt ed here  É]  

> AandP  <-  lmer.mi(Tarsus  ~ Treatment  + I  (Age  -  12)  + (I  (Age  -  12)|  ChickID)  + 

(1  |  BroodID), mi.object  = imputation)  

# the analysis step (with LMM; see Chapter 13) and the pooling step; note that 

I(Age - 12) makes treatment effect to be assess ed at 12 days after hatching   

> display  (AandP)  

[É  outputs omitted here  É]  

This process gives us some (sensible) results (Table 4.5; detailed results are in the online Appendix 

4) and similar approaches have been often used. However, the validity of performance without 

explicitly specifying clustering and its consequences are not well studied (van Buuren 2011). In the 

mice  package, we can actually specify grouping by incorporating the pan  package, which uses a 

special MI procedure designed for two-level clustered data (Schafer 2001; Schafer & Yucel 2002). 

A current limitation is that only one grouping variable is allowed.  

> prep aration  <-  mice  (PdoGrowthData1, maxit  = 0)  

# runn ing an empty imputation for the two objects below as pre paration. Also 

note tha t variables in PdoGrowthData were turned into numeric as mice only takes 

numeric variables.  

> predictor <-  preparation  $ predictorMatrix # the predictor matrix  

> imputation <-  preparation  $ method # the vector of imputation methods  

> predictor ["Tarsus", "ChickID"]  <-  - 2 # specifying ChickID as a grouping 

factor  
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> imputation ["Tarsus"] < -  "2l.pan"  

# using the 2 - level mixed modeling method from the pan package  

> imputation  <-  mice  (PdoGrowthData1, m  = 5, seed  = 7777)  

# the imputation step with 5  copies  

[É  outputs omitted here  É]  

> analysis  <-  with  (imputation, lmer  (Tarsus  ~ Treatment  + I  (Age  -  12)  + ( I  

(Age  -  12)  |  ChickID)  + (1  |  BroodID))  

# the analysis step with a LMM (see Chapter 13)  

> pooling  <-  pool  (analysis) # the pooling step  

> summary  (pooling )  

[É  outputs omitted here  É]  

The preparation is a little involved, but the three-step MI process is the same as above. The results 

from mice  specifying grouping in this dataset resemble those from mi  (Table 4.5). This is 

encouraging, but recall that we were unable to include brood identities (i.e. correlated structure) as a 

grouping factor, so one should draw conclusions cautiously.  

[Table 4.5 around here] 

There is another important problem in multilevel data:  there are multiple levels of predictors, so 

missing data processes can operate at different levels. Consider two-level data; if the response is 

weight at time  ti, predictors can be height at time ti (level 1) and sex (level 2). If weights are taken 

at 6 different occasions (t1-t6), missing data on sex for one individual can appear as missing values 

in 6 cells. If we subject this dataset to normal MI procedures, these 6 cells may be assigned different 

sexes! Where multiple types of predictors are present, Gelman and Hill (2007) suggest data 

imputation should be carried out separately for each level (e.g. time and sex). The mice  package 
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has this capability, but it is currently limited to only two levels (i.e., only one clustering variable is 

allowed). Other issues associated with imputation in multilevel data are described in van Buuren 

(2011; see also Raudenbush and Bryk 2002; Daniels and Hogan 2008; Enders 2010; Graham 2012).  

4.4.7 Data augmentation  

The processes and results of data augmentation (DA; Graham 2009, 2012; Enders 2010) are similar 

to those of MI. The main difference is that in MI, the user will see the replaced missing values, 

while DA internalizes the three-step procedures, including RubinÕs rules with m = ", and feedback 

between the imputation and analysis steps. (Figure 4.5D; sensu McKnight et al. 2008). DA is 

superior to MI because a DA procedure is akin to the number of data imputations (or 

augmentations) being infinite, and also because there is a feedback process between missing data 

and parameter estimation (Nakagawa and Freckleton 2008). However, MI has an advantage: DA 

can only use variables that are in the model, while MI can include auxiliary variables, which may 

often be required to convert MNAR missingness into MAR (section 4.3.2). Therefore, in most 

cases, MI procedures are recommended over DA (Graham 2009, 2012). 

In the case of multilevel data, DA procedures may sometimes be preferable. If the response variable 

is the only variable with missing data, as is the case with the sparrow growth data used in section 

4.4.3, DA can treat such missing values appropriately by taking all the clustering groups (e.g. 

individuals, broods, and families) into account. In Bayesian statistical packages, such features are 

usually included as the default. Here, I use the MCMCglmm package (Hadfield 2010).  

> library  (MCMCglmm) # loading the MCMCglmm package  

> model  <-  MCMCglmm (Tarsus  ~ Treatment  + I  (Age  -  12), random  = ~ us  (I  (Age  -  

12))  :  ChickID  + BroodID, data  = PdoGrowthData, verbose  = FALSE)  

# running a Bayesian LMM (see Chapter 13)  

> summary  (model)  
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[É  outputs omitted here  É]  

In this case, the results are very similar to those from mi  and mice  (Table 4.5). Note that the 

MCMCglmm function will not tolerate missing values in predictors. However, if multiple variables 

with missing data are all entered as responses (i.e., multi-response models; Hadfield 2010), DA will 

handle missing values for all these response variables. As an example in which we used this 

strategy in a bi-response/bivariate meta-analysis, see Cleasby and Nakagawa (2011). It is worth 

mentioning that multi-response (or multivariate) models are closely related to structural equation 

modelling (SEM), which is sometimes referred to as latent variable modelling, path analysis or 

causal modeling (Chapter 8). Missing data in such models are briefly discussed later (section 4.5.3). 

   4.4.8 Non-ignorable missing data and sensitivity analysis 

As mentioned above, there are no tests to detect MNAR (non-ignorable) missingness, so we need to 

rely on our understanding and knowledge of the biological systems at hand. We can, however, 

suspect that MNAR missingness is possible, especially when the fraction of missing information (") 

is high (" > 0.5). Two main methods exist for non-ignorable (MNAR) missingness: selection 

models and pattern-mixture models. The details of the MNAR methods are beyond the scope of 

this chapter, so I refer readers to accessible accounts elsewhere (Allsion 2002; Molenberghs and 

Kenward 2007; Enders 2010). However, I will  mention some main aspects of these models. Both 

models require constructing specific assumptions with regard to MNAR missingness. If these 

assumptions are incorrect, these non-ignorable models may perform worse than the models for 

ignorable missingness (i.e. MI and DA). To put it simply, a good MAR model may be better than a 

bad MNAR model (Schafer 2003; Demirtas & Schafer 2003).  

The main problem of non-ignorable missing data is that there are an infinite number of ways in 

which such missingness can occur. Naturally, very few generally applicable software 

implementations are able to cope with infinitely different manifestations of non-ignorable 
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missingness (Allison 2002). However, there is an ad hoc sensitivity analysis to explore the possible 

impacts of non-ignorable missingness on the pooled estimates from MI under MAR (Rubin 1987). 

For example, you might suspect the age variable in the sparrow data to be MNAR rather than MAR 

(section 4.3.1). It is possible younger birds (or older birds) are selectively missing. Such MNAR 

missingness can be explored by first adding (or subtracting) imputed values under MAR. We can 

then compare pooled estimates from this sensitivity analysis (a MNAR model) to the original 

estimates under MAR. Rubin (1987) suggested a 20% decrease or increase in imputed values would 

be a sufficient sensitivity test, but this is an arbitrary suggestion. Enders (2010) suggests ± 0.5 

standard deviation of the variable should be added. This sensitivity method can be easily 

implemented using the mice  package. You will find an example analysis in the online Appendix 4.  

4.5 DISCUSSION  

   4.5.1 Practical issues 

There are several practical considerations to consider prior to using MI  or DA procedures, and I 

discuss five of them here. First, is there a minimum requirement for sample size? This question is 

hard to answer. Of course, larger samples are desirable, because missing values in a small dataset 

further decrease the amount of information, which is already limited (Graham 2009). However, 

Graham and Schafer (1999) conducted a simulation study where they showed that a MI procedure, 

which assumes multivariate normality, performed very well with up to 18 predictors and 50% 

missing data; this means that the dataset only had around 15 degrees of freedom. They also 

demonstrated that a joint modeling approach with the multivariate normal assumption did well with 

non-normal data (a version of the norm package was used in this study; Schafer 1997) although 

such an approach would be limited compared to sequential regression imputation (used in the mi  

and mice  packages).  



#)"

"

This leads to my second point. For MI procedures assuming a multivariate normal distribution such 

as in the norm and Amelia  packages, non-normal data should be transformed first. Indeed, the 

Amelia  package comes with various transformation options (Honaker et al. 2011). Back-

transformation can be used to recover the original scale. A related issue is whether imputed data 

should be rounded when the original data are integers. Generally it is not a good idea to do so, 

unless an imputed variable is a response variable to which a Poisson regression (Chapter 6) will be 

applied (Graham 2009, 2012; Enders 2010; van Buuren 2012). Furthermore, if you are using MI 

procedures with the multivariate normal assumption, categorical variables should probably be 

turned into binary variables using dummy coding. For example, if you have a categorical variable 

with four levels, this variable can be recoded into three binary (dummy) variables. More generally, 

p levels in a categorical variable can be turned into (p Ð 1) dummy variables. Note that coding 

dummy variables from a categorical variable can be easily done in R using dummy.code  in the 

psych  package (Revelle 2012; see an example in the online Appendix4). If you are using 

sequential regression imputation such as in the mi  and mice  packages, you need to make sure 

missing values in categorical data are imputed with techniques for categorical data (e.g., logistic 

and multinomial regression).  

Third, for MI, it is important to check for convergence in the imputation step. Convergence here 

means that an imputation step reaches a set of stable values for a vector of means (m) and a 

variance-covariance matrix (V) (section 4.4.4). There are graphical functions to assess convergence 

in the two R packages, mentioned (Amelia  and mi ; see the online Appendix 4). If you have trouble 

with convergence in MI, transformation of skewed data may help, as skewed data could be slowing 

down imputation processes (Graham 2009, 2012).  

Fourth, when your statistical models include interaction terms, such terms should be included in the 

imputation step in MI procedures (von Hippel 2009; Graham 2009 2012; Enders 2010; van Buuren 

2012). Interaction terms usually come in two forms: the product of two continuous variables, or the 
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product of one continuous variable and one categorical (dummy) variable (e.g. males and females). 

When creating interaction terms, a continuous variable needs to be centered (i.e. subtracting the 

mean from each value). In fact, centering or scaling (i.e. z-transformation) of all continuous 

variables is very frequently a good idea in regression modeling because this process can make linear 

models more interpretable (e.g. the intercept will be located at the means of predictors; Schielzeth 

2010). Inclusion of interactions in the imputation step is necessary, because if you do not consider a 

particular interaction in the imputation step, the effect of this interaction can be lost even when 

missing data are MCAR. This is because data imputation is carried out assuming such an interaction 

does not exist (Enders 2010; Enders and Gottschall 2011). The same applies to a quadratic term, as 

it can be seen as an interaction with itself. ( These derived terms (i.e. terms created by existing 

variables) should be handled by passive imputation rather than included as extra variables in the 

data matrix. Passive imputation maintains relationships between original and derived variables 

during the imputation process (von Hippel 2009; van Buuren and Groothuis-Oudshoorn 2011). 

Examples for these processes are found in the online Appendix 4 and in van Buuren and Groothuis-

Oudshoorn (2011). 

Fifth, our ÔexpertÕ knowledge is useful during MI. The ranges, or possible maxima and minima, for 

variables with missing data can be included as ridge priors in a MI procedure, such as that in the 

Amelia  package (Honaker et al. 2011; see Nakagawa and Freckleton 2011). This process 

potentially reduces bias, especially when the fraction of missing information (") is at least 

moderately large. Unfortunately, the ridge prior functionality is not implemented in the mice  and 

mi  packages (but see the argument squeeze  in mice ). I recommend more than one package be 

used to run MI for a dataset as a form of sensitivity analysis (Section 4.4.5). If the results from 

different packages disagree, one likely explanation is that the imputation step did not converge." 
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   4.5.2 Reporting guidelines 

For publication, it is advisable to provide details and rationale of your missing data procedures, 

because such procedures will probably look foreign and even outlandish to potential editors and 

reviewers. Here, I will present the reporting guidelines for missing data analysis from van Buuren 

(2012). His list consists of 12 items that should be included, when reporting results obtained from 

MI procedures.  

(1) Amount of missing data: Give the ranges of % missing values in all variables and the average % 

in your dataset.  

(2) Reasons for missingness: Give reasons why such missing values were present.  

(3) Consequences: Report known differences between subjects with and without missing values.  

(4) Method: Describe which method was used, and under what assumptions (e.g. a MCMC 

procedure for MI under MAR).  

(5) Software: Name the software packages (e.g. Amelia ) along with descriptions of the important 

settings.  

(6) Number of imputed datasets: This is m in the imputation step (see section 4.4.5).  

(7) Imputation model: Report the variables included in the imputation step (i.e. the imputation 

model) and whether any transformations were applied.  

(8) Derived variables: Mention what kind of derived variables (e.g. interaction and quadratic terms) 

were included in the imputation step.  

(9) Diagnostics: Report on diagnostics for convergence of the methods used, methods (section 

4.5.1) and for checking whether imputed data are plausible.  
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(10) Pooling: Explain how pooling of results was done (usually pooling of m estimates by RubinÕs 

rule (Section 4.4.5), if possible along with related indices, most importantly, the fraction of missing 

information (!) and the relative efficiency (%).  

(11) Complete case analysis: Report results from complete case analysis, and compare with those 

from proper missing data procedures (i.e. MI and DA).  

(12) Sensitivity analysis: Conduct sensitivity analyses, and report the results. Sensitivity analysis 

can be in the forms of RubinÕs ad hoc adjustment or the use of different software packages.  

van Buuren (2012) considers Items 1, 2, 3, 4, 6 and 11 are essential, but that the others can be 

reported in appendix or online materials. Although his list was tailored for MI, I believe that 

following his guidelines will be useful even when using DA and other missing data procedures. 

Such details will be certainly helpful for editors and reviewers who are unfamiliar with missing data 

methods.   

   4.5.3 Missing data in other contexts 

Here I provide you with connections between this chapter and other chapters in this book. As 

mentioned in Section 4.1, missing data procedures may be essential for model selection (Chapter 3; 

Nakagawa and Freckleton 2011), although there is surprisingly little research on this relationship 

(but see Claeskens and Hjort 2008). Some procedures for censored or truncated data (Chapter 5) 

involve an imputation step. In addition to the imputation used in the NADA package discussed in that 

chapter, the kmi  package (Allignol 2012) uses a Kaplan-Meier estimator to impute missing 

censoring times. 

Different forms of linear models such as GLMs (Chapter 6),  models with overdispersion (Chapter 

12), and mixed models (Chapter 13),can be integrated within MI procedures at the analysis step. 

However, special care is required for multilevel data (Raudenbush and Bryk 2002; van Buuren 

2011). All the regression models can be seen as special cases of structural equation modelling, SEM 
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(causal modelling or mediation analysis; Chapter 8). SEM has a long history of missing data 

methods (reviewed in Allison 2002, Enders 2010), and the majority of stand-alone SEM software 

packages (e.g. Mplus  and AMOS) come with missing data procedures (MI or DA). There are a 

number of other R packages available for missing data in SEM, including bmem (Yuan and Zhang 

2012) and rsem  (Zhang and Wang 2012). Meta-analysis (Chapter 9) is a type of weighted 

regression model. Therefore, missing data procedures described in this chapter are applicable for, at 

least, predictors (called moderators in the meta-analysis literature; Pigott 2009, 2012). However, 

treating potential missing data in the response variable (i.e. effect size statistics) has attracted much 

research, and has its own unique techniques, some of which are akin to selection models for MNAR 

missingness (Sutton 2009).  

Hadfield (2008) utilizes missing data theory in evolutionary quantitative genetic contexts. He 

showed that MNAR missingness could be converted to MAR missingness using pedigree 

information, which can be included as a correlation matrix in mixed models. Genetic relatedness 

can act as a kind of auxiliary variable; siblings must share similar morphological characters. In a 

similar manner, spatial correlation (Chapter 10) and phylogenetic correlation (Chapter 11) can 

inform missing values in associated models because these different types of correlations are, in fact, 

the same (or very similar) mathematically in terms of specifying relationships among data points in 

the response variable (Ives and Zhu 2006; Hadfield and Nakagawa 2010). Interestingly, 

phylogenetic comparative analysis by Fisher et al. (2003) was the very first case of using MI in 

evolutionary biology, but few followed their initiative. The shortcomings of ignoring missing data 

are now, however, starting to be recognized in comparative analysis (Garamszegi and M¿ller 2011; 

Gonz‡lez-Su‡rez et al. 2012) with some implementations of missing data procedures appearing (e.g. 

PhyloPars ; Bruggeman et al. 2009). We can expect a rapid future integration and development of 

missing data procedures in this and related areas of research. 
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   4.5.4 Final messages 

Missing data are pervasive, and pose problems for many statistical procedures. I hope I have 

convinced you that we all should be using methods that treat missing data properly (i.e. MI or DA), 

rather than deleting data or using single imputation. Importantly, it is not difficult to implement 

these missing data procedures (in particular, MI) with the aid of R. I also hope that you will  now 

think about the missingness mechanisms when planning  studies (i.e. collecting auxiliary variables). 

Specially, I think that ecologists and evolutionary biologists can probably benefit a lot from 

learning the planned missing design (Baraidi and Enders 2010; Graham et al. 2006; Graham 2009, 

2012; Rhemtulla and Little 2012), although such a concept is nearly unheard of in our field.  

I also presented you with some current difficulties associated with missing data. There are no easy 

solutions for missing values in multilevel data, especially when missing values occur in multiple 

levels and when clustering occurs at more than two levels. Nor is the implementation of MNAR 

models is straightforward. But missing data theory is an active area of research, so who knows what 

the future will bring to us and to R? Enders (2010) comments that ÒUntil more robust MNAR 

analysis models become available (and that may never happen), increasing the sophistication level 

of MAR analysis may be the best that we can doÓ. 

Acknowledgments: I thank Losia Lagisz for help with figure preparation. I also thank Shane 

Richards, Gordon Fox, Simoneta Negrete, Vini Sosa, and Alistair Senior for their very useful and 

constructive comments on earlier versions of this chapter.  
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Figure 4.1  

"

The three missing data mechanisms (MCAR, MAR and MNAR) and ignorability (whether we need to model 

the mechanism of missing data) in relation to observed data (Yobs), missing data (Ymis), the missingness 

matrix (R), and their relationships (q; parameters that explain missingness, i.e. mechanism). The solid 

arrows, dotted arrows, and arrows with crosses represents ÔconnectionÕ, Ôpossible connectionÕ, and Ôno 

connectionÕ, respectively. The lines connecting ignorability and missingness group the three mechanisms 

into the two ignorability categories. Also no pure forms of MCAR, MAR and MNAR exist, and all 

missingness can be considered as a form of MAR missingness; this is represented by the shaded continuum 

bar on the left. Modified from Nakagawa and Freckleton (2011). 
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Figure 4.2  

 

Bivariate illustrations of the three missing data mechanisms and consequences for A) MCAR with 

40% missing values (40%), B) MCAR with 80% missing values (80%), C) MAR (40%), D) MAR 

(80%), E) MNAR (40%) and F) MNAR (80%). Solid circles are observed data and empty circles 

are missing data; dotted lines represent ÔtrueÕ slopes while solid lines were estimated from observed 

data. 
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Figure 4.3 

"

"

"

A plot of missing data patterns of the three variables (Badge, Age and Tarsus), produced by the missmap  

function in the Amelia  package (Honaker et al. 2011). See text for more details.  
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Figure 4.4 

"

Paired panel plots of the data matrix Y and missingness matrix R for the house sparrow dataset, 

created by the pairs.panels  function in the psych  library (Beaujean 2012). Tarsus, Age, and 

Badge are numerical values in Y, while Tarsus.1, Age.1, and Badge.1 indicate missingness for these 

values, respectively. The upper triangle panels show Spearman correlations (NA means Ônot 

availableÕ), while the lower triangle panels show scatterplots with lowess (locally weighted 

scatterplot smoothing) lines. The diagonals show histograms. There is some evidence for MAR 

because the correlation between Tarsus and Badge.1 is high (rS = 0.67). Similarly, the moderate 

correlation between Tarsus and Age.1 (rS = -0.20) suggests that we may have missing data in Age 

when birds have smaller tarsus size.
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Figure 4.5 

"

Diagrams illustrating the process of A) data deletion, B) single imputation, C) multiple imputation, and D) 

data augmentation. ÔBiasedÕ estimates mean biased parameter estimates, biased uncertainty estimates, or 

both. A circle represents a dataset, and holes in the circle represent missing values. Such holes can be deleted 

(A) or filled in (B-D). A square represents a set of estimated parameters; the degree of bias in estimation is 

represented by a gray scale, with darker shades being less biased. See text for details (this figure was 

modified from Nakagawa and Freckleton 2008).
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Figure 4.6  

"

Schematics illustrating the process of A) the EM 

(expectation maximization) and EMB (expectation 

maximization with bootstrapping) algorithm with the 

E-step (expectation) and M-step (maximization), and 

B) the MCMC procedure with the I-step (imputation) 

and the P-step (posterior).  is a vector of the means 

and  is a variance-covariance matrix. Thicker arrows 

represent iterative processes. See text for details. "
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Table 4.1 

Badge size (mm) and Age (yr) information for 10 house sparrow males. Age consists of 4 different types of 

datasets according to the mechanism of missing values (Ð): Complete data, MCAR data, MAR data and 

MNAR data.  

Bird  Badge  Age  

(Case)  Complete  Complete MCAR MAR MNAR  

1  31.5  1 1 Ð 1  

2  33.5  2 Ð Ð 2  

3  34.4  3 3 Ð 3  

4  35.1  1 Ð 1 1  

5  35.4  2 2 2 2  

6  36.7  4 4 4 Ð  

7  37.8  2 2 2 2  

8  38.8  4 4 4 Ð  

9  40.3  3 3 3 3  

10  41.5  4 Ð 4 Ð  
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Table 4.2 

An illustrative example of a data set Yobs with three variables (v1-v3; Mis = missing observations and Obs = 

observed values) and its missingness, R (the recording of v1-v3 into binary variables, m1- m3); modified from 

Nakagawa and Freckleton (2011). Note that v3 is not measured; it is included here for illustrative purposes 

but usually would not be a part of Y and R.  

  Data [Y = (Yobs, Ymis)]  Missingness [R]  

Case  v1 v2 v3  m1 m2 m3  

1  Obs Mis Mis  0 1 1  

2  Obs Obs Mis  0 0 1  

3  Obs Obs Mis  0 0 1  

4  Obs Mis Mis  0 1 1  

5  Obs Obs Mis  0 0 1  

6  Obs Obs Mis  0 0 1  

7  Obs Obs Mis  0 0 1  

8  Obs Mis Mis  0 1 1  

9  Obs Mis Mis  0 1 1  

10  Obs Obs Mis  0 0 1  
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Table 4.3 

The estimates of descriptive statistics for Variable 2 (see the main text) and the estimates form regression 

analysis of Variable 2 against Variable 1 (complete case analysis), using the complete dataset and the three 

types of datasets with missing values (MCAR, MAR and MNAR) in two scenarios where 40% or 80% of 

Variable 2 are missing (the total sample size, n = 200; no missing values in Variable 1). The true value for 

each parameter is  = 0, "= 1.414,  = 0,  = 1 and  = 1; the mean ( ) and standard deviation () 

are for Variable 2,  and  are the intercept and slope respectively, and  is the residual standard 

deviation. For corresponding plots, see Figure 4.2. 

Missing data mechanisms 
(% missing data) 

   s.e.  s.e.  

No missing data 0.091 1.464 -0.052 0.075 1.069 0.079 1.055 

MCAR (40%) 0.129 1.415 -0.019 0.101 0.961 0.106 1.092 

MCAR (80%) 0.189 1.351 -0.063 0.155 0.930 0.145 0.950 

MAR (40%) 0.723 1.308 -0.139 0.170 1.136 0.177 1.131 

MAR (80%) 1.355 1.185 -0.374 0.510 1.219 0.341 1.038 

MNAR (40%) 1.040 0.942 0.700 0.095 0.580 0.098 0.831 

MNAR (80%) 2.093 0.811 1.499 0.186 0.645 0.163 0.691 
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Table 4.4 

Results of analyses for the house sparrow data, using complete case analysis, mice ,  and mi  (the latter two 

are multiple imputation via MCMC procedures). Estimates from mice  and mi are the pooled model-

averaged parameter estimates from the five imputed datasets (m = 5), pooled regression coefficients ( ), 

overall standard error, s.e. ( ), 95% confidence intervals (CI), and the fraction of missing information 

("). For details, see the online Appendix 4.  

Procedure Predictor Estimate s.e. Lower CI Upper CI " 

Complete case analysis Intercept -1.733 2.391 -7.009 2.466 Ð 

 Age 0.479 0.273 -0.062 1.020 Ð 

 Fledgling 0.090 0.132 -0.155 0.368 Ð 

 Heterozygosity 0.167 2.232 -3.929 4.899 Ð 

mice  Intercept -3.389 2.406 -8.343 1.565 0.335 

 Age 0.750 0.214 0.315 1.184 0.258 

 Fledgling -0.040 0.094 -0.227 0.148 0.099 

 Heterozygosity 1.605 2.258 -3.102 6.312 0.392 

mi  Intercept -3.624 2.416 Ð Ð Ð 

 Age 0.782 0.236 Ð Ð Ð 

 Fledgling -0.046 0.099 Ð Ð Ð 

 Heterozygosity 1.844 2.221 Ð Ð Ð 

 

b
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Table 4.5 

Results of analyses for house sparrow data, treated as a multilevel dataset. Estimates are from four 

procedures: complete case analysis, MI using both the mice  and mi  packages, and DA using MCMCglmm. 

Estimates from mice  and mi  are the pooled model-averaged parameter estimates from the five imputed 

datasets (m = 5), pooled regression coefficient (), overall standard error, s.e. ( ), 95% confidence 

interval (CI), and the fraction of missing information (").  For MCMCglmm, the estimates are posterior 

means, s.e. are standard deviation of the posterior distributions of the estimates, and CI represents credible 

intervals. Only the results from the fixed factors are presented. For details, see the  Appendix 4.  

Procedure Predictor Estimate s.e. Lower CI Upper CI " 

Complete case analysis Intercept 18.110 0.152 17.807 18.413 Ð 

 Treatment 0.167 0.160 -0.15  0.486 Ð 

 Age 1.143 0.011 1.122 1.165 Ð 

mice  Intercept 17.880 0.362 17.168 18.592 0.020 

 Treatment 0.316 0.229 -0.133 0.766 0.028 

 Age 1.157 0.009 1.139 1.174 0.097 

mi  Intercept 18.147 0.208 Ð Ð Ð 

 Treatment 0.259 0.241 Ð Ð Ð 

 Age 1.147 0.010 Ð Ð Ð 

MCMCglmm Intercept 18.015 0.402 17.171 18.720 Ð 

 Treatment 0.355 0.247 -0.106 0.837 Ð 

 Age 1.169 0.011 1.149 1.192 Ð 

b vT
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Glossary 

List -wise deletion: Deletion of rows (cases) that contain one or more missing values in a dataset. 

Complete case analysis: Analysis where one only uses rows (cases) that do not have missing values. 

Pair-wise deletion: In bivariate analysis (e.g. correlation analysis), deleting cases where missing values 
occur in one or both variables, for that analysis only. 

Biased parameter estimates: Systematic deviation from true estimates of parameters including regression 
coefficients and variance components.  

Biased uncertainty estimates: Systematic deviation from true estimates of uncertainty, i.e. standard errors 
and confidence (credible) intervals.  

Available case analysis: Analysis where one only uses rows (cases) that do not have missing values as in 
complete case analysis, but adjusting the number of cases depending on which variables are used for a 
particular model. Step-wise regression often uses available case analysis. 

Available variable analysis: Analysis where one only uses variables that do not have any missing values. 

Mean imputation: The use of the mean of a variable to fill in missing values for that variable. 

Regression imputation: The use of regression predictions to fill in missing values. 

Single imputation: Any imputation process that creates only one copy of a dataset, in which missing values 
are replaced by imputed values.  

Multiple imputation : An imputation process that creates many copies of a dataset with missing values 
replaced by imputed values. 

Data augmentation: A process in which missing data imputation and data analysis is combined, and these 
two steps provide feedback to each other. 

Missing data theory: Theory on how missing values arise (Donald RubinÕs missing data mechanisms) and 
how such missing values can be best treated for data analysis.  

Mi ssing data mechanisms: The statistical relationship between observations and the probability of missing 
data.    

MCAR  (missing completely at random): Missing values are distributed at random, or they are not related to 
other variables. 

MAR  (missing at random): Missing values are distributed at random after controlling for other variables.  

MNAR  (missing not at random): Missing values are not distributed randomly, and they are related to 
unobserved data (i.e. missing values themselves and/or non-recorded variables). 

Missing data pattern :  A description of which values are missing in a data set.  

Missingness: A recoding of a data matrix into a binary matrix with missing values as 1 and non-missing 
values as 0. 
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Ignorability : In missing data theory, if missing data are either MCAR or MAR, we do not need to model the 
way in which they are missing Ð it is Ôignorable.Õ 

Planned missing data design: Designing a study deliberately including missing values, for example, to 
reduce the cost of the study by measuring a low-cost variable in all individuals but a correlated high-cost 
variable only in some. 

Auxiliary variables: Variables that are included in an imputation process to increase the accuracy of 
imputed values; such variables are strongly correlated with variables with missing values.  

Joint modeling: an imputation approach in which all (multivariate) missing values in a dataset are imputed 
at once, assuming a multivariate-normal distribution.  

Fully conditional specification: An imputation process where each variable can be imputed separately when 
each variable is conditional on other values in the data. 

Sequential regression imputation: See fully conditional specification. 

Multivariate imputation by chained equation (MICE) : An imputation process using fully conditional 
specification. 

Fraction of missing information: A quantity reflecting the fraction of missing values as well as the 
information content of those missing values.   

Relative efficiency: The number and importance of errors due to multiple imputation, relative to the 
minimum possible number of errors. This depends on the fraction of missing information and the number of 
sets of imputed data. 

Selection models: One of the common modeling approaches used when missing data are non-ignorable (i.e. 
MNAR).  

Pattern-mixture models: One of the common modeling approaches used when missing data are non-
ignorable (i.e. MNAR). 

Dummy coding: Binary recoding of categorical variables; categorical variables with m levels are recorded 
into m Ð 1 binary variables. 

Passive imputation: An imputation method used for missing values in derived variables such as 
interactions, quadratic terms, and transformed variables.  


